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Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, Lugano, Italy; Faculty of Biology
and Medicine, University of Lausanne UNIL, Lausanne, Switzerland; and Department of Medicine, Venetian
Institute of Molecular Medicine, University of Padova, Padova, Italy

L
Calcinotto A, Kohli J, Zagato E, Pellegrini L, Demaria M, Alimonti A. Cellular
Senescence: Aging, Cancer, and Injury. Physiol Rev 99: 1047–1078, 2019. Published
January 16, 2019; doi:10.1152/physrev.00020.2018.—Cellular senescence is a
permanent state of cell cycle arrest that occurs in proliferating cells subjected to
different stresses. Senescence is, therefore, a cellular defense mechanism that pre-

vents the cells to acquire an unnecessary damage. The senescent state is accompanied by a failure
to re-enter the cell cycle in response to mitogenic stimuli, an enhanced secretory phenotype and
resistance to cell death. Senescence takes place in several tissues during different physiological
and pathological processes such as tissue remodeling, injury, cancer, and aging. Although senes-
cence is one of the causative processes of aging and it is responsible of aging-related disorders,
senescent cells can also play a positive role. In embryogenesis and tissue remodeling, senescent
cells are required for the proper development of the embryo and tissue repair. In cancer, senes-
cence works as a potent barrier to prevent tumorigenesis. Therefore, the identification and
characterization of key features of senescence, the induction of senescence in cancer cells, or the
elimination of senescent cells by pharmacological interventions in aging tissues is gaining consid-
eration in several fields of research. Here, we describe the known key features of senescence, the
cell-autonomous, and noncell-autonomous regulators of senescence, and we attempt to discuss
the functional role of this fundamental process in different contexts in light of the development of
novel therapeutic targets.
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I. INTRODUCTION

Cellular senescence is a stable cell cycle arrest that occurs in
diploid cells and limits their proliferative life span. The first
description of this phenomenon dates back to 1960s, when
Hayflick and Moorhead observed that human diploid fibro-
blasts in culture could reach a maximum number of cell
divisions before arresting their growth (150). This biologi-
cal clock, known as the “Hayflick limit,” is caused by a
progressive shortening of telomeres upon each cell division
and represents a physiological response to prevent genomic
instability and therefore accumulation of DNA damage (79,

150). This phenomenon is currently defined as replicative
senescence. Senescent cells can accumulate with age and at
sites of age-related pathologies, such as in osteoarthritis
(261) and atherosclerosis (47), and can have an impact on
the normal physiology of the tissues, causing a progressive
functional deterioration. However, diploid cells can also
experience an accelerated senescence response, independent
from the telomere shortening, known as premature senes-
cence (79, 82, 283). This senescence response occurs imme-
diately after certain insults, such as genotoxic stress or met-
abolic shock, triggered in cells by culture conditions. Onco-
genic stress triggered by the overexpression of certain
oncogenes or loss of tumor suppressor genes (TSGs) in pri-
mary and tumor cells also induces senescence (32, 77). It
has been demonstrated that senescence occurs in vivo in
different tumors, where it arrests tumor development and
progression. Thus, because of its antiproliferative effects,
senescence also appears to be a potent antitumor mecha-
nism. This tumor-suppressive function of senescence has
paved the way for treatments that enhance senescence for
cancer therapy, a process termed prosenescence therapy for

Physiol Rev 99: 1047–1078, 2019
Published January 16, 2019; doi:10.1152/physrev.00020.2018

10470031-9333/19 Copyright © 2019 the American Physiological Society
Downloaded from journals.physiology.org/journal/physrev (047.157.162.131) on April 13, 2020.

http://doi.org/10.1152/physrev.00020.2018


cancer. Despite their involvement in various pathological
conditions, senescent cells play key roles in physiological
processes such as embryogenesis, tissue remodeling, and
tissue repair (85). Here, we provide an overview of the
causes that induce cellular senescence in different organisms
with a particular focus on the various roles that senescent
cells play in the human body.

II. CELLULAR SENESCENCE

A. Hallmarks of Cellular Senescence

Senescent cells are not characterized by universal or specific
biomarkers, but rather by a number of nonexclusive mark-
ers. Cell cycle arrest is a crucial characteristic for the iden-
tification of all types of senescence, but it cannot be consid-
ered a unique marker because of the fact that multiple cel-
lular mechanisms can drive a stable replicative arrest.
However, the inability to express genes required for prolif-
eration, even in a promitogenic environment (96, 98), al-
lows distinguishing senescence from quiescence, a nonpro-
liferative state of the cells that is readily reversed in response
to mitogens. Senescent cells are characterized by a higher
activity of senescence-associated �-galactosidase (SA-�-gal)
at pH 6 and can be identified by flow cytometry using flu-
orescein di-D-galactopyranoside, a substrate that can be
cleaved by galactosidase (44). In senescent cells, cell cycle
arrest correlates with an augmented level of cell cycle inhib-
itors, including p16INK4a, p21CIP1, and p27. Moreover,
elevated expression of p19ARF, p53, and PAI-1 are ob-
served in senescent cells and used as miscellaneous senes-
cence biomarkers (44) (FIGURE 1). In addition, senescent
cells are commonly characterized by an altered cell size with
a more smoothed shape compared with proliferating cells
and exhibit senescence-associated heterochromatin foci for-
mation (242), accumulation of lipofuscin (136), DNA dam-
age foci (159), loss of lamin B1 (296), senescence-associated
distension of satellites (308), expression of embryonic chon-
drocyte–expressed 1 (DEC1) and decoy death receptor 2
(DCR2) (71), upregulation of some microRNAs (miRNAs)
and secretion of a large number of factors, including growth
factors, cytokines, chemokines, and proteases, known as
the senescence-associated secretory phenotype (SASP) or
senescence-messaging secretome (FIGURE 1). All the above-
mentioned features define the gold-standard markers to
identify senescent cells and represent the actual hallmarks
of senescence (70, 157, 192). Nonetheless, there is growing
interest in finding novel markers of senescence that could
have also a prognostic potential in aging and cancer (107,
108, 113). One of the characteristics of senescent cells is
that they remain metabolically active and able to produce
and secrete a plethora of factors that can affect the tissue
microenvironment in different modalities (3, 291). A key
feature of the senescence phenotype is the acquisition of this
altered cell metabolism indispensable for the accomplish-
ment of the senescence program (249). Depletion of the

catabolic enzyme glycogen phosphorylase in cells results
in glycogen accumulation, which is associated with re-
duced proliferation and a corresponding induction of
senescence (254). Growing literature on the metabolism
of cellular senescence reports that both glucose consump-
tion and lactate production are elevated during senes-
cence (57, 101, 179). Characteristic changes in the me-
tabolism of senescent cells in the context of cancer are
discussed in sect. V.

B. Role of Senescence in Evolution and
Different Organisms

Senescence is one of the major causes of aging and aging-
related disorders (214). For many years, scientists were puz-
zled about the reason why natural selection, which designs
an organism for optimal survival and reproductive success,
would allow cellular senescence to be transmitted to off-
spring. The recent discoveries that cellular senescence is
required, although not essential, for the regulation of em-
bryogenesis and acts as a checkpoint that limits the prolif-
eration of tumor cells may explain why evolution does not
prevent cellular senescence to disappear in a population
from generation to generation. This explanation is coherent
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FIGURE 1. Characteristics of cellular senescence. Cellular senes-
cence can be triggered by multiple genetic alterations induced by
oxidative stress, DNA, or telomere damage. Senescent cells exhibit
permanent growth arrest, increased expression of cell cycle inhibi-
tors, and changes in cellular structures and protein expression.
Senescence can be reinforced in an autocrine manner or spread
through paracrine mechanisms to neighboring tumor cells by the
release of senescence-associated secretory phenotype (SASP) or
senescence-messaging secretome (SMS).
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with the “antagonist pleiotropy” hypothesis, which theo-
rized that genes that have beneficial effects early in life can
be detrimental at later ages and therefore can be favored by
evolution and passed to the offspring. Intriguingly, there are
several animals, including mammals, that seem to have
evolved without cellular senescence. In 1990, Finch and
colleagues analyzed the possibility of the existence of organ-
isms that exhibit negligible senescence. They found that
organisms such as rockfish, sturgeon, turtles, bivalve mol-
lusks, and certain perennial trees, and possibly lobsters,
survived until considerable ages in the wild without detect-
able reduction in the fitness, such as in their reproductive
capability or functional activities and without showing
marker of senescence, such as telomerase shortening or in-
creased oxidative damage (35, 119). Interestingly, some or-
ganisms are considered biologically immortal. A small
fresh-water Cnidarian, the Hydra, seems to show negative
senescence at younger age and negligible senescence at older
age (220), whereas the Turritopsis nutricula, a small species
of hydrozoan, once reaching adulthood, is able to transfer
its cells back to childhood (259). This ability to reverse the
mitotic cycle is unique in the animal kingdom and allows
the jellyfish to bypass death. Of note, these animals do not
develop cancers, and embryogenesis and tissue remodeling
are regulated in different modalities compared with mam-
mals. A better understanding of the different senescence
trajectories in different animals could lead to a deeper com-
prehension of the evolutionary forces that shape the life of
an organism, and it is currently under investigation by many
laboratories.

C. Causes and Effector Pathways of
Senescence

Cellular senescence is induced in physiological and patho-
logical contexts by a number of different causes. Among
them, telomere shortening represents one of the most im-
portant (289, 290, 292). Telomeres are repetitive nucle-
otide-sequence motifs that protect the ends of chromo-
somes from deterioration or fusion with adjacent chromo-
somes. Each cell division leads to the loss of 50–200 bp of
unreplicated DNA at the 3= end. The enzyme telomerase
(also called terminal transferase) is responsible for adding
bases to the end of telomeres to compensate telomere ero-
sion. However, telomerase activity is not sufficient to bal-
ance the rapid rate of cell proliferation that results in telo-
mere shortening and cell aging (249, 340). Moreover, telo-
mere erosion triggers the DNA damage response (DDR;
FIGURE 1), a signaling pathway in which ataxia-telangiec-
tasia mutated (ATM) or ATM- and Rad3-related (ATR)
kinases (83) block cell-cycle progression through stabiliza-
tion of the p53 protein (130) and the transcriptional acti-
vation of the cyclin-dependent kinase (Cdk) inhibitor p21
(51). As a demonstration of that, senescent cells depict pos-
itive to �-H2AX (a phosphorylated form of the histone
variant H2AX) and to the DDR proteins 53BP1, NBS1,

and MDC1. Indeed, together, these molecular events can
induce a transient proliferation arrest that can evolve in
senescence if cells are not able to repair the damage. DNA
damage mediated by hit of oxidative stress participates in
telomere erosion (269) (FIGURE 1). In addition to telo-
mere shortening, physiological stresses imposed to
healthy and cancer cells are also reported to induce cel-
lular senescence. Abnormal O2 levels induce shortening
of telomeres, leading the cells to senescence (331, 345).
Also, the culturing condition of both human and mouse
cells can cause cellular senescence, a phenomenon called
“culture shock” (269). Oxidative stress, endoplasmic retic-
ulum stress or interferon (IFN)-related responses also in-
duce cellular senescence (48, 58, 251) (FIGURE 1). Treat-
ment with DNA damage agents such as UV, �-irradiation
(82), tert-butyl hydroperoxide (82) or anticancer chemo-
therapy agents (27, 90, 276) are known to induce senes-
cence in both normal and cancer cells, a phenomenon
named “therapy-induced senescence” (TIS) (79, 114, 273,
302). Although TIS arrests cancer proliferation, it also ac-
celerates the aging process in the normal cells of the patient
(see sect. V for more details). The discrimination between
TIS, replicative senescence, and stress-induced senescence is
very arduous, because the nomenclature merely mirrors the
spectrum of different stimuli that can induce the cells to a
senescent phenotype. Senescence can also be triggered by
the activation of oncogenes [oncogene-induced senescence
(OIS)] and loss of TSGs, as will be discussed in detail in sect.
V. In addition, the immune response can also drive senes-
cence. A systemic proinflammatory state that occurs with
aging (termed inflammaging) (125) has been implicated in
the induction of senescence in the chondrocytes, a condition
that is responsible of osteoarthrosis, and in additional ag-
ing-related disorders linked to inflammation (155, 265,
313) (see sect. IV of this review for more details).

D. Autocrine and Paracrine Senescence and
Its Impact on the Tissue
Microenvironment

Senescent tumor cells secrete a plethora of immune modu-
lators, inflammatory cytokines, growth factors, chemo-
kines, and proteases commonly referred to as the SASP (72)
or senescence-messaging secretome (194) (FIGURE 1). Key
elements of the SASP are the proinflammatory cytokines
interleukin-6 (IL-6), interleukin-8 (IL-8), and interleu-
kin-1� (IL-1�). Additional chemokines binding to the IL-8
receptor C-X-C motif chemokine receptor 2 (CXCR2),
such as CXCL-2, CXCL-3, and CXCL-5, are also impor-
tant components of the SASP in OIS. CCL-2 (MCP-1),
CCL-20 (MIP-3�), CCL-7 (MCP-3), CXCL-4 (PF-4),
CXCL1 (Gro-�), and CXCL-12 (SDF-1) have been de-
scribed in the SASP of cells undergoing to OIS and replica-
tive senescence (72). Importantly, IL-1� is considered one
of the master regulators of the SASP. The release of IL-1� by
senescent cells transmits senescence to normal and tumor
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cells. IFN can also induce senescence by triggering DNA
damage in the target cells (232, 312). Senescent cells also
secrete growth factors, such as many insulin-like growth
factor–binding proteins (IGFBPs) that can modulate the
insulin-like growth factor (IGF) pathway. As demonstrated,
IGF can act as a potent inducer of senescence (74). Impor-
tant elements of the SASP are also matrix metalloprotein-
ases (MMPs), such as MMP-1 and -3, that can also act as
regulatory elements of senescence, as they can cleave IL-8,
IL-1, VEGF, and other CXCL/CCL family chemokines
(72). In addition, senescent cells secrete serine proteases like
urokinase- or tissue-type plasminogen activators, the re-
spective uPA receptor, and inhibitors of these serine pro-
teases (PAI-1 and -2). Finally, the SASP is composed of
nonmacromolecular elements such as nitric oxide (NO) and
reactive oxygen species (ROS) that can affect the phenotype
of neighboring cells (72). Most of the SASP components are
regulated by the nuclear factor kappa light-chain–enhancer
of activated B cells (NF-�B), CCAAT/enhancer-binding
protein beta (CEBP/�) and by mTOR (5, 62, 132, 193, 196,
281). The transcription factor GATA4, acting upstream of
NF-�B, is also required for senescence establishment and
SASP induction (177). Another regulator of SASP is the
bromodomain and extraterminal domain (BET) family
member bromodomain-containing protein 4 (BRD4) that
positively regulates the senescence secretome and promotes
senescence immune clearance (315). The SASP is also regu-
lated by signal transducer and activator of transcription 3
(STAT3) in certain tissues. Indeed, inhibition of the JAK
pathway results in a reprogramming of the SASP that abol-
ishes the negative components of these factors (319). In
addition, the mixed-lineage leukemia 1 (MLL1) has also
been reported to enable the SASP, mainly by inducing genes
required for the DNA replication and for the DDR activa-
tion (49). Other SASP regulators include NOTCH1 (160)
and the high mobility group B proteins (HMGB1 and
HMGB2) (7, 86). Finally, recent data demonstrate that the
SASP can be controlled by the cGAS/STING pathway.
cGAS is a DNA sensor that, through the adaptor protein
STING, triggers cellular senescence and the transcription of
genes that control the SASPs (104, 139, 353). By means of
the SASP, senescent cells can influence the tissue microen-
vironment via paracrine mechanisms (92). They can influ-
ence neighboring proliferating cells and the recruitment and
activation of immune cells in aging tissues and tumors (92,
339), as is detailed in sect. V of the present review. Being
that the SASP is an important player in tuning the balance of
the complex tissue microenvironment, several investigators
are currently trying to identify compounds that can repro-
gram the SASP (SASP reprogramming) in cancer to boost
the anticancer immune response (see sects. V and VII of this
review for more details). Similarly, inhibition of the SASP
by either elimination of senescent cells or compounds that
block the senescence secretome has been proposed for the
cure of aging-related disorders (64).

III. SENESCENT CELLS IN TISSUE
REMODELING

The senescence program is engaged in a number of physio-
logical and pathological processes that require tissue re-
modeling. The persistence of senescent cells during these
processes determines their positive or negative role: tran-
sient accumulation of senescent cells in tissues are mainly
covering beneficial functions, whereas persistent senescence
seems to negatively impact the restoration of tissue homeo-
stasis (FIGURE 2).

A. Embryogenesis

Programmed senescence has been shown to play a beneficial
role during mammalian embryogenesis (85, 235, 305). SA-
�-gal� and Ki-67� senescent cells are characterized by ac-
tivation of WNT and Hedgehog pathways and are present
throughout various regions of the embryo during develop-
ment, including the apical ectodermal ridge, neural roof
plate, mesonephros, and endolymphatic sac. In the mouse
embryo, these cells appear in a coordinated fashion at em-
bryonic days 10.5–11.5 and undergo apoptosis or are
cleared by macrophages at embryonic day 17.5 (235, 305).
During this developmental phase, senescent cells coordinate
limb patterning and tissue remodeling mainly via paracrine
activation of phospho-extracellular signal–regulated kinase
(pERK) pathways in adjacent mesenchymal cells. A feed-
back loop is initiated where pERK signaling in turn main-
tains senescence, and interference with this loop leads to
mild developmental abnormalities (305). Interestingly, de-
velopmental senescent cells are p21�, but p53– or p16–, and
SA-�-gal� cells are lost in p21 null, but not p53- or p16-
null, embryos. In accordance, p21 upregulation is p53 in-
dependent and is mediated by TGF-�/SMAD and PI3K/
FOXO signaling. The p21 null embryos display mild mor-
phological defects, suggesting compensatory mechanisms
exist for limb patterning if senescent cells are absent.

Therefore, embryonic development is a robust process in
which senescence plays an important, albeit nonessential,
role (235, 305). Senescent cells are also observed during
amphibian development in which they are induced by trans-
forming growth factor-� (TGF-�) signaling. It is therefore
possible that senescence may have originally arisen as a
developmental mechanism during evolution (85).

B. Tissue Repair

In response to tissue injury or wounding, sophisticated
mechanisms exist in mammals to prevent infections by for-
eign pathogens and to repair the damaged tissue. Tissue
repair is a phenomenon consisting of four primary phases
[hemostasis, inflammation, proliferation, and remodeling
(121)], and senescence has been described to influence these
processes via the SASP.
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A role for senescent cells in promoting wound healing was
first discovered using an engineered mouse model (p16–
3MR) in which senescent p16� cells can be visualized,
sorted, and selectively eliminated. Inducing cutaneous
wounds in untreated mice results in a transient appearance
of senescent fibroblasts and endothelial cells at the site of
injury, and elimination of senescent cells delays wound re-
pair kinetics. During their presence in wounds, senescent
cells secrete platelet-derived growth factor AA, which in-
duces differentiation of nearby fibroblasts into myofibro-
blasts, driving wound contraction during the proliferative
phase and optimizing tissue repair (89) (FIGURE 2).

Cellular senescence also plays a proregenerative function as
the SASP can induce cellular plasticity and stemness.
HRASV12-expressing keratinocytes upregulate many genes
associated with stemness, which are regulated by the SASP
regulator NF-�B. HRASV12-expressing hepatocytes induce
stemness gene expression in neighboring cells in vivo. Tran-
sient exposure of newborn keratinocytes to the SASP pro-
duced by HRASV12-expressing keratinocytes also induces
upregulation of stemness genes in vitro. When SASP-
exposed newborn keratinocytes are grafted into wounds in
nude mice, they promote hair growth and increased number
of hair follicles, confirming a proregenerative function. In-
terestingly, prolonged exposure to the SASP results in cell-
cycle arrest and paracrine-induced senescence. This intrin-

sic mechanism could be a cellular response to prevent tu-
morigenesis in response to excessive regenerative stimuli
(270).

Mammals are incapable of regenerating complex structures
such as entire limbs. However, salamanders do display this
ability, and senescent cells are reported to influence regen-
eration. Senescent cells transiently appear during interme-
diate stages of salamander limb regeneration before being
cleared via macrophages upon limb maturation (362). It is
unclear whether senescent cells cover a positive role and
how they contribute to limb regeneration. It is likely that
macrophage-mediated clearance is required for tissue re-
modeling, similar to observations in developing embryos
(235, 305), as depleting macrophages in salamander leads
to regenerative defects (140).

C. Fibrosis

A fibrotic response is activated during reparative processes
and entails the formation of excessive connective tissue.
Accumulation of extracellular matrix (ECM) proteins re-
sults in permanent scarring and affects tissue structure and
functionality, which can lead to organ failure and death in
extreme cases (172). In different tissues, either a promoting
or interfering role for cellular senescence in the formation of
scar tissue have been demonstrated.
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PIM1

MMPs

Fibrotic Resolution

Senescent cell Fibroblast Myofibroblast Epidermal Cell

Differentiated
Cell
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FIGURE 2. Senescent cells in tissue remodeling. Senes-
cent cells secrete PDGF-AA in cutaneous wounds to induce
myofibroblast differentiation and wound closure. They facili-
tate fibrotic resolution through matrix metalloproteinase
(MMP) secretion and induce reprogramming in neighboring
cells via an IL-6/PIM1 axis. Senescent cells also ensure limb
patterning is correct during embryogenesis.
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During the remodeling phase of cutaneous wound healing,
the matricellular protein cysteine-rich angiogenic inducer
61 (CYR61), otherwise known as CCN1, induces p16 and
p53-mediated senescence of dermal fibroblasts. CCN1 ac-
tivates NADPH oxidase 1 (NOX1) through Ras-related C3
botulinum toxin substrate 1 (RAC1). NOX1 induces ROS
levels, which activates p53 via the DDR and p16 via ERK
and p38 MAPK (173). These CCN1-induced senescent fi-
broblasts secrete antifibrotic MMPs to degrade ECM com-
ponents and curb fibrosis. Accordingly, mice carrying a mu-
tant form of CCN1, thus unable to induce senescence, or
p16–3MR mice deprived of senescent cells display in-
creased collagen deposition and enhanced fibrosis (89,
173).

Chronic tissue damage to the liver can result in cirrhosis, in
which excessive fibrosis compromises the organ’s function,
leading to liver failure. The most common insults to the
liver are from hepatitis viral infections, excess alcohol con-
sumption, and nonalcoholic steatohepatitis, in which ex-
cess fat leads to liver inflammation. These damaging stimuli
can activate hepatic stellate cells (HSCs) to differentiate
ECM-producing myofibroblasts (25).

Administration of CCl4 to mice induces liver damage and
fibrotic scarring, but also senescent HSCs along the periph-
ery of the scar. These senescent HSCs facilitate fibrotic res-
olution through decreased production of ECM components
as well as increased expression of antifibrotic SASP factors
such as proteases and MMPs. Importantly, p53�/�;INK4A/
ARF�/� mice treated with CCl4 displayed fewer numbers of
senescent HSCs and extensive liver cirrhosis (190).

During liver damage, cellular senescence is reported to be
induced by the matricellular protein CCN1, which activates
the RAC1/NOX1 mechanism to promote p16 and p53 ac-
tivation, in a similar manner to cutaneous wound healing
(182). Additional mechanisms for the induction of senes-
cence in liver damage are IL-22, which promotes HSC se-
nescence in a p53-dependent manner through STAT3 and
SOCS3 (186), and IGF-1, which induces HSC senescence in
a p53-dependent manner (245). Mice treated with recom-
binant CCN1, IL-22, or IGF-1 displayed accelerated fi-
brotic resolution (182, 186, 245), suggesting that prosenes-
cence therapies could be promising agents to resolve liver
fibrosis.

Senescence also plays an important role in limiting fibrosis
in infarcted hearts. In a mouse model in which infarction is
induced by ligation of the left coronary artery or by trans-
verse aortic constriction, cardiac myofibroblasts enter se-
nescence (227, 366). This process limits further fibrosis as
p53�/�;INK4A�/� mice, which are unable to induce senes-
cent myofibroblasts, display enhanced collagen deposition
and overall decreased cardiac function compared with wild-
type mice during transverse aortic constriction (227). Inter-

estingly, in the left coronary artery model, only p53 loss is
required (366). It is possible that senescence pathways in
cardiac myofibroblasts depend upon the type of damage.
Nonetheless, induction of senescence via CCN1 in infarcted
hearts resolved fibrosis and improved heart function (227).
Therefore, as in the case of liver fibrosis, therapies that
induce senescence may also be attractive for myocardial
infarctions.

Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease
characterized by decreased lung function due to persistent
scarring. Common risk factors for IPF include smoking and
exposure to environmental toxins (221).

Senescent biomarkers have been observed in human IPF
samples, suggesting a pathological role for senescence in
this disease (152, 277). In a mouse model of IPF, bleomycin
administration induces senescence in epithelial cells and fi-
broblasts (15, 152, 277). Senescent lung fibroblasts can in-
duce myofibroblast differentiation in a paracrine manner,
suggesting that they express a profibrotic SASP (277). This
may explain why senescent cell accumulation and persis-
tence exacerbate pulmonary fibrosis rather than resolve it,
in contrast to other fibrotic lesions. Pulmonary senescence is
mediated by an increase in NOX4 and decrease in antioxi-
dant response NFE2-related factor 2 (Nrf2) expression. As
a result, ROS levels increase, leading to DNA damage and
senescence (152).

Interestingly, genetic variants are reported to contribute to up
to one third of IPF cases, and the genes associated with telo-
mere maintenance, the telomerase reverse transcriptase
(TERT) and the telomerase RNA component (TERC), are
mutated in ~25% of these patients. These mutations are asso-
ciated with short telomeres, which is likely to induce senes-
cence in lung cells and aggravate IPF (10, 17, 221). ROS are
known to accelerate telomere shortening, and therefore, it is
also possible that telomere damage is a factor in sporadic IPF
cases (75). Eliminating senescent cells or inhibiting ROS alle-
viates IPF in bleomycin-treated mice (152, 277). This ap-
proach may also be attractive to therapeutically alleviate IPF in
human patients.

D. Tissue Reprogramming

The seminal findings that differentiated somatic fibroblasts
can be reprogrammed into a pluripotent state in vitro by
expression of the four Yamanaka factors (OCT3/4, SOX2,
c-MYC, and KLF4) have opened up exciting new potentials
in regenerative medicine. However, the extremely low effi-
ciency of this process (~0.02%) suggests the existence of
intrinsic barriers for reprogramming, potentially including
cellular senescence (310, 311).

Indeed, expression of the four Yamanaka factors in
mouse and human fibroblasts activates markers of cellu-
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lar senescence such as SA-�-gal and senescence-associ-
ated heterochromatin foci formation. Interestingly, the
individual expression of the four factors is also sufficient
to induce reprogramming-induced senescence via p16
and p21 activation. The histone demethylase JMJD3 is
recruited to the INK4A promoter upon reprogramming-
induced senescence and decreases levels of the repressive
H3K27me3 modification, thus leading to p16 induction.
c-MYC and KLF4 trigger p21 expression via p53,
whereas SOX2 expression does it via p53-independent
mechanisms (23).

Mouse and human fibroblasts silenced for p21 or p53 gen-
erate a greater number of induced pluripotent stem (iPS) cell
colonies with an accelerated rate, indicating that repro-
gramming is more efficient when senescence is ablated (23,
162, 180, 219, 322). Silencing INK4A only improved re-
programming efficiency in human fibroblasts, whereas si-
lencing ARF affects only mouse fibroblasts (204). These
results are likely due to human and murine fibroblasts dif-
ferences in the pathways engaged for senescence induction
(287).

As expression of INK4A/ARF increases with organismal
aging (189), it is likely that cells from old individuals
would be less prone to reprogramming in vitro. Indeed,
skin fibroblasts from old mice (�2 yr) cannot be repro-
grammed as efficiently as cells from young mice (2 mo)
unless the INK4A/ARF locus is silenced (1, 204). An-
other approach to reprogram old cells is by using a six-
factor cocktail (OCT4, SOX2, KLF4, c-MYC, NANOG,
and LIN28). This method has been described to success-
fully generate iPS cells from centenarian adult fibroblasts
as well as from fibroblasts serially passaged to replicative
senescence (199). How this six-factor cocktail can repro-
gram senescent and very old cells is currently unknown,
although NANOG and/or LIN28 may counteract the se-
nescence program. LIN28 expression improves repro-
gramming efficiency in mouse fibroblasts, whereas
NANOG expression only increases reprogramming kinetics
(148). Therefore, LIN28 expression likely results in senes-
cence bypass, and a possible mechanism could be that
LIN28 inhibits production of the let-7 miRNA, thereby
preventing downstream translation of HMGA2 (146), a
transcriptional repressor of INK4A/ARF (244). It is also
possible that LIN28 functions independently of the INK4A/
ARF locus by enhancing CDK4 translation (9, 348), which
may negate p16-mediated senescence.

Owing to INK4A/ARF forming a barrier to reprogramming
in vitro, it has been suggested that transient silencing of the
locus during cellular reprogramming could be an effective
approach for regenerative medicine in old individuals with-
out increasing risk of malignancy (204). However, the role
of INK4A/ARF differs vastly during in vivo reprogram-
ming. Mice engineered to transiently express the four Ya-

manaka factors upon doxycycline administration (i4F) dis-
play NANOG positive cells in multiple tissues, indicating
successful iPS cell generation. Despite this, in vivo repro-
gramming efficiencies are still very low (2), and therefore,
intrinsic reprogramming barriers must also exist in vivo.
However, in contrast to in vitro conditions, senescence, and
more specifically INK4A/ARF, promote in vivo iPS cell gen-
eration. Upon doxycycline administration, i4F mice con-
taining a heterozygous INK4A/ARF locus are resistant to
teratoma formation and do not display NANOG-positive
cells in tissues normally permissive to reprogramming in i4F
wild-type mice. Interestingly, reprogrammable tissues in
i4F wild-type mice display coexisting SA-�-gal and
NANOG-positive cells, which are absent in heterozygous
INK4A/ARF mice. These results indicate that senescent
cells, which arise from DNA damage induced by expression
of the four Yamanaka factors, generate a favorable envi-
ronment for reprogramming in neighboring cells. This is
mediated by the secretion of the SASP factor IL-6 (36). IL-6
activates the JAK/STAT target PIM1 downstream to induce
reprogramming and cellular plasticity (36, 234). Aged mice
were also more permissible to in vivo reprogramming than
young mice because of the increased presence of senescent
cells (234) (FIGURE 2). This may suggest therapies for tissue
regeneration would actually be more successful in elderly
patients.

Other stimuli of senescence such as tissue injury create a
permissible niche for in vivo cellular reprogramming. The
i4F mice treated with bleomycin and subsequent doxycy-
cline displayed a greater number of NANOG-positive cells
in lungs than in uninjured mice (234). Inducing injury be-
fore reprogramming has therefore been discovered to be an
effective method of iPS cell generation in tissues not typi-
cally susceptible to reprogramming such as skeletal muscle.
These findings could help direct future strategies in regen-
erative medicine for repair of skeletal muscle or other diffi-
cult to reprogram tissues (61).

IV. SENESCENT CELLS IN AGING

A. Senescence in Age-Related Disease

Almost all multicellular organisms display features of ag-
ing, currently defined as a progressive loss in tissue and
organ functions over time. Eventually, loss of tissue func-
tions can lead to the generation of numerous chronic and
age-related pathologies. As the frequency of all these disor-
ders exponentially increase later in life, common basic mo-
lecular and cellular mechanisms could underlie how they
arise (46).

Various markers of senescence, including SA-�-gal, p16,
and DDR, accumulate in tissues of aged mammals including
rodents (42, 189, 335), baboons (156, 168), and humans
(67, 97, 211, 225, 267), suggesting that senescent cells

CELLULAR SENESCENCE

1053Physiol Rev • VOL 99 • APRIL 2019 • www.prv.org
Downloaded from journals.physiology.org/journal/physrev (047.157.162.131) on April 13, 2020.



could play a detrimental role in age-associated pathologies.
Moreover, it has been suggested that the development and
progression of these diseases could be ascribed to the de-
cline of the regenerative functions of stem cells with advanc-
ing age (288). In vivo, the first causal link between senes-
cence and aging has been proven in the progeroid mice
BubR1 (22). These mice express extremely low levels of
BubR1, a spindle checkpoint gene responsible for proper
chromosome segregation during mitosis, and display an
early onset of several age-associated disorders including
sarcopenia, cataracts, cachexia, lordo kyphosis, cerebral
gliosis, and decreased arterial wall thickness and elasticity
(21, 149, 222). When BubR1 mice were engineered so that
p16 expressing cells can be induced to undergo selective
apoptosis (a model known as INK/ATTAC), mice displayed
a significantly delayed onset in some of these disorders, but
overall lifespan was not increased (22). In a subsequent
study using naturally aging INK/ATTAC mice, the same
authors showed that elimination of p16� cells delays onset
of age-associated diseases in later life, but also increases
median and maximum lifespans, suggesting senescent cells
limit longevity (20).

B. Atherosclerosis

Atherosclerosis is initiated when lipoproteins amass in the
intima of arteries and induces activation of endothelial and
vascular smooth muscle cells (VSMCs). Activated cells trig-
ger an inflammatory response in which recruited monocytes
are converted into lipid-containing, foamy macrophages,
which then accumulate and form plaques. VSMCs initially
form a fibrous cap over the plaque to provide a barrier to
circulating platelets, but over time this cap can erode, caus-
ing plaque to be released into the bloodstream. This results
in downstream thrombosis and damage to organs fed by the
circulatory system like the heart, brain, and kidney. Many
vascular diseases arise because of this sequence of events
including myocardial infarction, stroke, unstable angina,
and sudden cardiac death (63, 309).

VSMCs and endothelial cells from human atherosclerotic
plaques upregulate a number of senescence markers includ-
ing SA-�-gal, p16, and p21 (133, 223, 229, 336). Interest-
ingly, genetic associations in humans suggest a protective
role for cellular senescence during atherosclerosis. Indeed,
individuals carrying polymorphisms in CDKN2A, which
result in decreased p16 expression and potentially inability
to enter senescence, are at increased risk for developing the
disease (212). Similarly, low-density lipoprotein receptor–
deficient (Ldlr�/�) mice with exclusive p16 deficiencies in
bone marrow (BM) cells display increased monocyte and
macrophage proliferation and accelerated atherogenesis
(195).

Conversely, cellular senescence is reported to play deleteri-
ous roles in early and late stages of the disease. Fatty streaks

are observed in Ldlr�/� mice after only 9 days on an athero-
genic diet. Surprisingly, these streaks contained SA-�-gal–
positive foam cell macrophages, which also upregulate ex-
pression of CCL2 and VCAM1. These factors recruit
monocytes, thereby stimulating greater conversion into
foamy macrophages. Ldlr�/� mice fed an atherogenic diet
for longer periods (88 days) display plaque-rich aortas con-
sisting of senescent endothelial cells, VSMCs, and foam cell
macrophages. These cells upregulate proteolytic SASP fac-
tors MMP12 and MMP13, which promote plaque instabil-
ity (63) (FIGURE 3). It is, therefore, possible that senescence
plays a dual role during atherosclerosis: on one side, prolif-
erative arrest of monocytes and macrophages limits plaque
growth, but on the other side, SASP factors secreted from
these cells can also induce disease progression (151). Nev-
ertheless, therapies that act to eliminate senescent cells
could be used to prevent and treat the disease. In accor-
dance with this approach, clearing p16-positive senescent
cells in Ldlr�/� mice led to reduce fatty streaks in early stage
and reduced plaque burden in late stages of the disease (63).

C. Bone Disease

1. Osteoarthritis

Osteoarthritis is a disease in which the overall integrity of
synovial joints is compromised. The articular cartilage un-
dergoes progressive degeneration characterized by bony
projections called osteophytes, thickness of synovial liga-
ments, and local inflammation. These changes result in
chronic pain and movement difficulties for sufferers. Chon-
drocytes maintain articular cartilage via secretion of vari-
ous ECM components, but they enter senescence and par-
tially lose this ability in an age-dependent manner (224,
261).

Chondrocytes from osteoarthritic joints display numerous
senescence markers including SA-�-gal (261), p16 (365),
and expression of various MMPs (30) (FIGURE 3). The
transplantation of senescent ear cartilage fibroblasts into
the knee joints of mice results in a gain of osteoarthritic
symptoms, such as articular cartilage damage and osteocyte
formation (116). It is possible that senescence-associated
MMP secretion induces local cartilage degradation, but di-
rect evidence is lacking.

Clearing senescent cells may, therefore, be an attractive
method to alleviate osteoarthritis. This approach has al-
ready been proven to be effective in mice using genetic and
pharmacological strategies. Using the p16–3MR model, se-
nescent cells were discovered to accumulate in the synovium
and cartilage surface after posttraumatic osteoarthritis in-
duced via anterior cruciate ligament transfection. Clearing
senescent cells via administration of GCV or UBX0101 (a
compound which selectively kills senescent cells via disrup-
tion of the Mdm2/p53 interaction) results in repair of dam-
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aged cartilage, reductions in expression of inflammatory
and tissue-modifying SASP factors, and decreased cartilage
erosion. Interestingly, when naturally occurring senescent
cells were constantly cleared in mice starting at 12 mo of age
using the INK/ATTAC model, osteoarthritic symptoms did
not manifest. Therefore, therapies which selectively elimi-
nate senescent cells may be effective to both prevent and
treat osteoarthritis (167).

2. Osteoporosis

Osteoporosis is a disorder resulting from an imbalance in
bone turnover rate, in which bone resorption by osteoclasts
occurs in excess of bone formation by osteoblasts. This
leads to a reduction in both bone density and bone strength
and a resultant increased risk of bone fracture. Advanced
age is one of the biggest risk factors for osteoporosis (105),
and p16 expression is significantly upregulated in all cell
types found in the bone microenvironment in old mice com-
pared with young mice, although osteocytes and myeloid
cells were the only cells types that displayed an upregulated
SASP profile (115) (FIGURE 3).

Senescent bone cells were discovered to induce osteoporosis
by stimulating an increase in osteoclast progenitor survival
and impairing bone synthesis. Both processes are mediated
via the SASP and result in an imbalance in bone turnover

rate in favor of resorption. Clearing senescent cells in old
INK/ATTAC mice or old wild-type mice treated with da-
satinib and quercetin (a drug cocktail found to selectively
kill senescent cells) improves various measures of bone
strength including bone volume density, trabecular num-
ber, trabecular thickness, and trabecular spacing in the
spine and femur. Ruxolitinib administration was also found
to induce improvements in overall bone strength in old mice
(116). Ruxolitinib is a Janus kinase inhibitor previously
discovered to inhibit production of multiple SASP factors
(350). Elimination of senescent cells or interfering with the
SASP could, therefore, be useful for osteoporosis treatment.

D. Glaucoma

Glaucoma is currently the leading cause of blindness world-
wide and describes the progressive degeneration of the optic
nerve, resulting in a reduction in visual sensitivity and even-
tual sight loss. Approximately 70 million people worldwide
suffer from the disease, and 10 million of these individuals
are estimated to be bilaterally blind. The most common
form of glaucoma is primary open-angle glaucoma
(POAG), which accounts for around 80% of cases in the
United States. POAG is characterized by an increased intra-
ocular pressure (IOP) owing to increased resistance of aque-
ous outflow in the trabecular meshwork of the eye. The
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FIGURE 3. Senescent cells in disease. In atherosclerosis, senescent foam cell macrophages secrete CCL2
and VCAM1 to recruit monocytes and trigger their conversion into senescent foam cells. Senescent endothe-
lial and vascular smooth muscle cells secrete MMP12 and MMP13 to promote plaque instability. In osteoar-
thritis, senescent chondrocytes contribute to cartilage degradation possibly via MMP activity. In osteoporosis,
the senescence-associated secretory phenotype (SASP) from senescent bone cells promote osteoclast pro-
genitor survival and inhibit osteoblast activity. Together, these activities contribute to bone resorption. The
SASP secreted from senescent astrocytes triggers dopaminergic neuronal cell death and decreased neuro-
genesis in Parkinson’s disease. Senescent adipocytes secrete factors including CCL2 and TNF�, which
promote insulin resistance in type 2 diabetes.
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increased IOP is believed to cause retinal ganglion cell death
(341).

Advanced age is one of the leading risk factors for POAG
(341). It was recently reported that IOP could induce ex-
pression of SIX6, a homeobox protein involved in eye de-
velopment in mice. Interestingly, a risk variant in SIX6
(His141Asn) was discovered to increase POAG susceptibil-
ity by affecting the transcriptional activity of SIX6, result-
ing in increased p16 transcription and retinal ganglion cell
senescence (299). An independent study also reported that
the serine/threonine kinase TANK-binding protein 1
(TBK1) is upregulated upon IOP in mice. TBK1 induces p16
transcription and senescence via an AKT/Bmi1 pathway
(205). Thus, there is a potential link between induction of
cellular senescence and glaucoma.

However, it is currently unclear how senescent cells could
contribute to glaucoma development. The SIX6 risk variant
induces IL-6 expression, and SA-�-gal positive cells are
more predominant in regions of the outflow pathway in
POAG patients compared with control donors (208). It is,
therefore, plausible that tissue modifying SASP factors can
alter the microenvironment to limit aqueous outflow.

E. Neurodegeneration

Neurodegenerative diseases including Alzheimer’s and Par-
kinson’s disease place a great economic and social burden
on society. Unfortunately, many clinical trials against them
have produced disappointing results, and new approaches
are desperately needed to develop functional therapies. As
the frequencies of these disorders increase with age, cellular
senescence may play a critical role (66). In line with this,
astrocytes in aged brains express greater levels of p16 than
in young brains (29). At this point, there is limited pub-
lished evidence on whether causal links exist between senes-
cence and neurodegeneration. Inflammatory molecules, in-
cluding interleukins, are elevated in Alzheimer’s and Par-
kinson’s patients (FIGURE 3). This “neuroinflammation” is
suggested to contribute to disease pathology (126), and it is
possible that senescent cells in affected brains could be the
source. Astrocytes in frontal cortices from Alzheimer’s pa-
tients express greater levels of p16, �-H2AX, and MMP1
compared with age-matched control samples (29, 126,
238). However, it is unknown how these cells influence
disease progression, and future studies of senescence in
neurodegenerative disease warrant further investigation.
In a mouse model of Parkinson’s disease (PD), it has been
recently shown that senescent astrocytes affect neurogen-
esis and contribute to the progression of neurodegenera-
tion. The elimination of senescent cells is sufficient to
delay cognitive impairments (65). Interestingly, human
PD brains also show an increased expression of senes-
cence markers (65).

F. Type 2 Diabetes

Obesity and aging are two of the major risk factors for type
2 diabetes mellitus (T2DM). Many countries face issues
with rapidly aging populations as well as drastic increases
in the prevalence of obese individuals. As a result, T2DM
represents one of the major worldwide health issues today
(252).

Excessive caloric intake in mice induces senescence in adi-
pose tissue via ROS-mediated activation of p53 and p21
(230). In contrast, both mice and humans under caloric
restriction show lower levels of senescence markers (122).

The induction of senescence due to excessive calorie intake
is reported to occur via an upregulation of ROS-scavenging
enzymes such as superoxide dismutase 2 and catalase (34).
Senescent adipocytes upregulate proinflammatory factors,
including CCL2 and TNF-�, and downregulate anti-in-
flammatory factors such as Adiponectin. This can lead mice
to develop impairments in insulin sensitivity and glucose
tolerance. The p53-deficient mice do not display signs of
adipocyte senescence in response to excessive calories in-
take and are rescued from the resultant pathological condi-
tions (230). Adipose senescence is also suggested to play a
role in human insulin resistance owing to the same senes-
cence markers being expressed in adipocytes from human
diabetic patients (230).

The mechanistic link between inflammatory molecules and
insulin resistance is poorly understood. In rat hepatoma
cells, TNF-� prevents tyrosine autophosphorylation of the
insulin receptor, thereby impairing glucose homeostasis
(117). CCL2 is a well-known macrophage recruiter, and
macrophage infiltration into white adipose tissue results in
the generation of feedback loops where macrophages se-
crete proinflammatory factors to further exacerbate insulin
resistance (349) (FIGURE 3). Adiponectin reduces overall
glucose levels in vivo by stimulating phosphorylation of
5=-AMP–activated protein kinase (AMPK) to increase cel-
lular glucose uptake and reduce expression of enzymes in-
volved in gluconeogenesis (352).

Evidence of senescence in pancreatic � cells has also been
observed. The p16 expression is increased in pancreatic
islets from old mice and attenuates islet cell proliferation
(188, 247). Surprisingly, it has recently been reported that
p16 plays a beneficial role in pancreatic � cell function, as
the protein can increase glucose-stimulated insulin secre-
tion and improve glucose homeostasis. Islets from old mice
also secrete more insulin upon glucose stimulation than in
young mice, suggesting that insulin secretion does not nec-
essarily depend upon islet regeneration, and pancreatic �
cell senescence may not be a factor in age-associated T2DM
(153, 247). Nevertheless, it is still possible that proinflam-
matory factors are released and act on adipose tissue in a
paracrine manner. Pancreatic � cell senescence also arises in
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mice continuously fed a high-fat diet, and importantly, the
insulin secreting function of these cells is compromised
(300). Islet senescence could, therefore, play opposite roles
in age-associated and diet-induced T2DM.

V. SENESCENT CELLS IN CANCER

Cellular senescence plays important roles in different
phases of tumorigenesis such as tumor initiation (OIS),
establishment [PTEN loss–induced cellular senescence
(PICS), TIS], and escape (258) (FIGURE 4). In this section,
we will describe in detail the mechanisms that regulate se-
nescence in cancer cells, the dual role played by the SASP in
the tumor microenvironment, and the identification of ther-
apies that target senescent tumor cells for the treatment of
cancer patients.

A. Cell-Autonomous Regulation of
Senescence in Cancer

1. Oncogene-induced senescence

Oncogene activation in mammalian cells results in prolifer-
ative stress and senescence induction that limits tumor
growth. Thus, senescence is a physiological tumor-suppres-
sive mechanism that inhibits the progression from benign
tumor lesions to malignant tumors. The induction of senes-
cence by oncogene activation is termed OIS (FIGURE 4). The
first experimental evidence of OIS came from overexpres-
sion experiments of oncogenic HRASG12V in human fibro-

blasts resulting in a permanent cell cycle arrest (79). Muta-
tions in the RAS oncogene are common in many human
cancers. However, its sole activation is not sufficient to
drive transformation and requires the cooperation with
other oncogenes and tumor suppressors (91). RAS overex-
pression in the absence of additional hits drives cells into
senescence, and this mechanism works as a barrier to block
tumor growth in vivo (37, 79). Interestingly, HRASG12V

overexpression is accompanied by the concomitant upregu-
lation of p19ARF, Pml, p53, retinoblastoma, and p16INK4a

(253, 283), and inactivation of these genes results in evasion
of HRASG12V-induced cellular senescence. Similarly, coex-
pression of oncogenes such as c-MYC, E1A, or DRIL1 by-
passes RASG12V-induced senescence (257). Overexpression
of additional oncogenes such as HER2, EGFR, and PI3K
can also drive senescence in primary and tumor cells, and
their signaling alters the SASP (14, 132). Mutations in
BRAF are a common feature in human melanoma patients.
However, mutations that lead to constitutive activation of
BRAF promote OIS in vitro and result in the formation of
melanocytic nevi in vivo, a form of benign skin tumor with
senescent cells. In particular, mutated BRAF overexpres-
sion initially drives hyperproliferation in melanocytes and
then induces p16INK4a expression, which drives arrest of the
cell cycle and establishment of senescence (334). As dis-
cussed above for RAS, BRAF-induced senescence is also the
result of interaction between BRAF itself and other onco-
genes and tumor-suppressor genes. In this case, the expres-
sion of IGFBP7 is necessary for senescence establishment,
and loss of this protein is a critical step in the progression to
melanoma (84). Loss of the tumor suppressor PTEN in a
BRAF-mutated context promotes tumor progression and
metastatic melanoma in vivo (60). On the other hand, inac-
tivation of oncogenes can also induce senescence. MYC
inactivation induces cellular senescence and regression in
different tumoral specimens such as lymphoma, osteosar-
coma, and hepatocellular carcinoma (HCC) (78). These ef-
fects are driven by multiple mechanisms, reflecting the im-
plication of MYC in different elements of the tumor mi-
croenvironment (26). Importantly, the presence of a
proficient immune system is a prerequisite for senescence
resulting from MYC inactivation (241). Another mecha-
nism, by which senescence is induced, is represented by the
loss or inactivation of TSGs. One of the first descriptions of
this phenomenon in vivo is related to the tumor suppressor
PTEN, whose loss induces a senescence response named
PICS (FIGURE 4) (60). Unlike OIS, PICS occurs in the ab-
sence of DDR. In PICS, PTEN loss drives p53 activation
through activation of mTOR and ARF-mediated inhibition
of MDM2. In addition, PTEN loss can induce p16INK4A

through upregulation of the transcription factor Ets2 (248)
and involves APC/CDH1 (301). In murine models of pros-
tate cancer, ablation of PTEN leads to a benign prostate tumor
lesion called prostatic intraepithelial neoplasia, which is char-
acterized by a number of senescent tumor cells (60). However,
when combined with p53 inactivation, these lesions progress

SASP

TSGTSG
lossloss OISOIS
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Senescent cancer cell

TIS
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FIGURE 4. Senescence induction in cancer. Senescence initiation
in cancer can rely on genetic alterations such as oncogene-induced
senescence (OIS) and tumor-suppressor gene (TSG) loss–induced
senescence or upon therapeutic interventions [therapy-induced se-
nescence (TIS)]. Senescent cells can induce senescence in neigh-
boring tumor cells by autocrine and paracrine mechanisms through
the release of senescence-associated secretory phenotype (SASP),
thus restraining cancer cell proliferation.

CELLULAR SENESCENCE

1057Physiol Rev • VOL 99 • APRIL 2019 • www.prv.org
Downloaded from journals.physiology.org/journal/physrev (047.157.162.131) on April 13, 2020.



to invasive prostate cancer because of evasion of PICS (28,
60). Interestingly, in recent years, several regulators of PICS
have been identified. For instance, the inhibition of S-phase
kinase–associated protein 2 (Skp2) restores senescence in
PTEN- and p53-deficent tumors through the upregulation
of p27 (351). SMAD4 inactivation or overexpression of
COUP-TFII, a SMAD4 inhibitor, also promotes the bypass
of PICS by allowing the transcription of cyclin D1 in Pten-
null tumors (263). Similarly, because PTEN-deficient pros-
tate cancer cells rely on NOTCH signaling for proliferation,
pharmacological inhibition of �-secretases or inhibition of
NOTCH1 enhances senescence in both Pten- and Pten;p53-
deficient prostate cancers through induction of p27 expres-
sion (268). Casein kinase 2 (CK2) also regulates senes-
cence driven by loss of PTEN through STAT3 activation
(176). Preclinical and clinical studies have also shown
that HER2 activation in Pten-null tumors leads to PICS
escape, causing aggressive prostate cancer (6). Finally,
inactivation of the tumor-suppressor inositol polyphos-
phate-4-phosphatase (INPP4B) in a PTEN-deficient con-
text leads to an increase in cellular senescence driven by p53
upregulation (138).

Mutations or loss of function in the gene neurofibromin 1
(NF1) drive a human disorder called type I neurofibroma-
tosis, characterized by the development of benign tumors in
both the peripheral and central nervous system. In these
lesions, mutations or inactivation of NF1 lead to activation
of the N-RAS pathway and to the induction of senescence
characterized by high expression of SA-�-Gal and p16INK4a

(68, 284). In addition to this, inactivation of NF-1 has been
shown to drive senescence establishment in human melano-
cytes too (200). Inactivating mutations of TSC2 gene in
primary murine embryo fibroblast displayed early senes-
cence associated with overexpression of p21CIP1/WAF1 that
is rescued by loss of p53 (201). Mutations in von Hippel–
Lindau TSG, an E3-ubiquitine ligase, are frequent in human
renal cell carcinomas and hemangioblastomas. Studies in
murine models clarified that von Hippel–Lindau inactiva-
tion induced cellular senescence and benign renal tumors
through the upregulation of pRB and p27 in a process de-
pendent on functional p53 and HIF (361). The absence of
RB1 in thyroid cells leads to cellular senescence driven by
N-RAS, resulting in the formation of benign adenomas, and
only upon inactivation of the RAS pathway is there progres-
sion to carcinoma (285). Restoration of the TSG p53 in vivo
in p53-deficient tumors drives tumor regression in lym-
phoma and sarcoma models by enhancing senescence (28).
Additional studies in a liver cancer model show that p53
reactivation leads to senescence induction and tumor re-
gression through the activation of the innate immune sys-
tem (166). Further examples of therapies targeting p53 will
be provided in sect. VE. Thus, not only loss of TSGs can
drive senescence, but also upregulation of TSGs can elicit a
senescence response.

2. Therapy-induced senescence

Several drugs in clinical use for the management of human
cancers can mediate TIS, including docetaxel, bleomycin,
cyclophosphamide, doxorubicin, vincristine, etoposide,
and cisplatin (114) (FIGURE 4). Ionizing radiation can also
induce senescence in different cancer cell lines (11, 120,
260). The mechanisms that force tumor cells into senes-
cence are generally linked to DNA damage enhancement
(83). In vitro, evidences of this process were described in
tumor cell lines right after the discovery of OIS (54). Anal-
ysis of senescence markers in human cancer biopsies from
patients previously exposed to neoadjuvant chemotherapy
confirmed the occurrence of TIS and its association to treat-
ment outcome (12, 293, 316, 321). Primary murine lym-
phomas have shown to respond to chemotherapeutic treat-
ment with cyclophosphamide by engaging a senescence pro-
gram controlled by p53 and p16INK4a (278). Several
targeted therapies that inhibit CDKs, NOTCH, CK2,
MDM2, JAK2, and SKIP2 can also promote growth arrest
and senescence in tumors of different genetic background
(268). The CDK4/6 inhibitor palbociclib is currently con-
sidered the most relevant prosenescent compound in the
clinic. Additional targeted therapies that induce senescence
in cancer cells are discussed later (see sect. VD). Intrigu-
ingly, some clinically available compounds can also block
senescence induced by chemotherapy or oncogenic stress,
limiting the outcome of the treatment. For instance, rapa-
mycin, a macrolide compound that blocks mTOR, can pro-
mote senescence inhibition in tumor cells, allowing the by-
pass of senescence in specific conditions (12).

B. Noncell-Autonomous Regulation of
Senescence in Cancer: Role of SASP

Senescent tumor cells, through the SASP, can educate and
shape the tumor microenvironment (FIGURE 4). In the tu-
mor microenvironment, senescent tumor cells are sur-
rounded by stromal cells, nonsenescent (proliferating) tu-
mor cells, and infiltrating immune cells. The main immune
cell subset–infiltrating tumors are T cells, natural killer
(NK) cells, myeloid-derived suppressor cells (MDSCs), and
macrophages that can have either an antitumor activity (ca-
nonical or M1-like) or promote tumor growth (alterna-
tively activated or M2-like) (92). The SASP has been defined
as a double-edged sword because it can act on neighboring
cells and on the recruitment and activation of immune cells,
resulting in both antitumorigenic and tumor-promoting ef-
fects (318). Via the SASP, senescent cells can induce para-
crine senescence in neighboring cells, thus acting as a barrier
against tumor growth. For instance, IL-8 and its cognate
receptor CXCR2 are needed for the establishment and
maintenance of senescence, and inhibitors targeting
CXCR2 lead to OIS bypass (4, 5). Similarly, inhibition of
IL-6 or IL-6 receptor also promotes senescence evasion in
OIS (193). The release of IL-1� by senescent cells transmits
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senescence to normal and tumor cells, and inhibition of
IL-1� signaling bypasses OIS and PICS (92, 94). Oncogenic
BRAF promotes senescence by upregulating IGFBP7, and
its inhibition promotes melanoma formation (334). The
SASP of senescent tumor cells can also induce senescence in
normal cells through TGF-�, VEGF, CCL2, and CCL20 (3).

The SASP is composed of a number of chemokines and
cytokines that can activate immune surveillance and bring
innate and adaptive immune responses to clear senescent
and proliferating tumor cells (329), enhancing the tumor
suppressive capability of senescence in cancer. Interestingly,
Th1 lymphocytes can promote senescence in tumor cells by
releasing in the tumor microenvironment “SASPs factors,”
such as IFN-� and TNF-�. Such cytokine-induced senes-
cence strictly requires STAT1 and TNFR1 signaling in ad-
dition to p16INK4A (38). In addition to this, studies in the
E�-myc B cell lymphoma model have demonstrated that the
secretion of TGF-� by macrophages triggers cellular senes-
cence and limits tumorigenesis, whereas its neutralization
abrogates senescence and leads to aggressive disease (266).
On the other hand, senescent tumor cells through the SASP
can promote tumor progression, boosting cell proliferation
and driving tumor vascularization (73), a phenomenon
named as maladaptive senescence (73, 193, 196, 272). An
informative and striking example of maladaptive senes-
cence is TIS in cancer patients. Although TIS can be initially
beneficial in blocking tumor cell proliferation, it also im-
pairs the elimination of senescence tumor cells from the
immune system. This leads to the accumulation of senescent
cells both in the tumor and in normal tissues of treated mice
(217, 243). As a consequence of the inefficient removal of
senescent cells, the SASP of tumor cells promotes tumor
relapse by sustaining the proliferation of nonsenescent tu-
mor cells, whereas the SASP of normal cells promotes aging-
related phenotypes in TIS-treated mice. This is in line with
clinical data that demonstrate that chemotherapy can in-
duce premature aging in adults and children treated with
high-dose chemotherapy (217, 243). In addition, TIS might
generate tumor cells that have an enhanced potential to
drive tumor growth by promoting cancer stemness (228).
The SASP of senescent fibroblasts can also support cell pro-
liferation of premalignant and malignant, but not normal,
epithelial cells (191, 213). Moreover, in PICS prostate tu-
mors, activation of STAT3 results in a SASP with immuno-
suppressive properties, which attracts tumor-infiltrating
MDSCs. MDSCs recruited in the tumors blocked the CD8�

T cell response and blunted the efficacy of chemotherapy-
induced senescence (166) by releasing in the tumor mi-
croenvironment IL-1 receptor antagonist that block IL-1
signaling in tumor cells (94). Additional examples of non-
cell-autonomous regulation of senescence in cancer include
sterile inflammation and the gut microbiota. Intriguingly,
factors secreted by damaged tumor cells during sterile in-
flammation can promote OIS bypass, driving pancreatic
cancer (142). Finally, senescence regulation by the gut mi-

crobiota is a rather new and intriguing field of research that
will be discussed in sect. VII. Eggert et al. also went on to
provide evidence suggesting that the SASP can either pro-
mote or suppress tumor progression. In the early stages of
liver tumorigenesis, the induction of senescence acts as a
tumor-suppressive mechanism. However, when senescent
cells are present in later phases of disease, the SASP inhibits
immunosurveillance, thus favoring tumor progression (112).
The roles of the SASP in maintaining and propagating se-
nescence on one side, and on bypassing senescence and
promoting proliferation on the other side, make it a peculiar
target for therapy in a wide range of pathological condi-
tions. In fact, the concept of SASP reprogramming is cur-
rently a hotspot in the field, as will be discussed later on in
this section. In addition to this, the notion of maladaptive
senescence and the controversial role of the SASP have
paved the way to an approach defined as senolysis, aimed at
the elimination of senescent cells (302).

C. Immune Clearance of Senescent Tumor
Cells

The main players in the clearance of senescent cells are
M1-like macrophages, NK cells, and T-helper 1 (Th-1) lym-
phocytes (178, 215) (FIGURE 5). NK cells recognize senes-
cent cells through the expression of NK cell receptor
(NKG2D), MICA, and ULBP2, found consistently upregu-
lated upon replicative senescence and OIS (275). NK cells
target and mediate the killing of senescent cells via granules
production (274). The restoration of p53 in liver carcinoma
results in tumor regression because of expression of proin-
flammatory cytokines and the establishment of senescence
(351). The p53-expressing senescent cells release factors
that promote macrophage polarization toward antitumor
M1 macrophages able to target senescent cells in cultures
(215). Macrophages can also participate to the clearance of
premalignant senescent cells (178). Kang et al. reported that
the presence of this population is indeed required for the
correct function of CD4� T cells and for the killing of
premalignant senescent hepatocytes (178). This study dem-
onstrated the importance of the immune surveillance on
senescent cells in tumor suppression, showing how the im-
pairment of the immune clearance of premalignant senes-
cent hepatocytes resulted in the development of HCCs
(178).

Recently, another study also suggested that during OIS,
primary human melanocytes express major histocompati-
bility complex class II molecules that activate the adaptive
immune response (324). Several possible mechanisms have
been proposed for the recognition of senescent cells by mac-
rophages. These processes are probably not specific to se-
nescent cells; rather, they are “eat me” mechanisms associ-
ated with macrophage recognition in cancer immunosur-
veillance and apoptotic cell clearance. The oxidized form of
membrane-bound vimentin has been reported to be ex-
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pressed on the surface of senescent human fibroblasts and
acts as eat me signal–leading macrophage phagocytosis
(127).

D. Therapies Targeting Senescent Cells

1. Prosenescence therapy for cancer

Because, as discussed above, senescence can limit cancer
development acting in autocrine and paracrine manners,
our group and others envisioned that targeted therapies
aimed at the selective enhancement of senescence in cancer
cells could be used to implement anticancer therapeutic reg-
imens. This approach is named “prosenescence” therapy
for cancer and differs from chemotherapy-induced senes-
cence that affects both normal and cancer cells in that it
specifically aims at senescence induction in cancer cells
(241) (FIGURE 6).

A) TELOMERASE INHIBITION. One of the mechanisms by which can-
cer cells bypass cellular senescence is the increased expres-
sion and reactivation of the telomerase complex, a process
required for tumor transformation and progression (31).
High levels of TERT expression and/or elevated telomerase
activity are commonly observed in cancer and usually cor-
relate with a poor prognosis (137). Numerous studies have
focused their attention in the identification of compounds
or strategies to inhibit telomerase activity in cancer cells

with subsequent loss of telomere integrity and induction of
senescence (reviewed in Refs. 8, 141). Because of the com-
plexity of the telomerase complex, a wide variety of strate-
gies to inhibit telomerase have been developed. These ap-
proaches include: antisense oligonucleotides, targeting RNA
component of telomerase (169, 185), chemical inhibitors of
telomerase (286), oligonucleotides and nucleoside (144),
small molecule pharmaceuticals that target human (h)
TERT (24), gene therapy constructs, molecules that target
telomere and telomerase-associated proteins, and inhibitors
from microbial sources. The first telomerase inhibitor to be
reported has been the 3-Azido-2,3-dideoxythymidine (azi-
dothymidine or zidovudine) (144) and results from phase I
and II clinical trials of azidothymidine alone or in combi-
nation have shown some rate of regression in different solid
tumors (170). Among the many small molecules developed
to inhibit telomerase activity, BIBR1532 [2-[E]-3-naph-
thalene-2-yl-but-2-enoylylamino]-benzoic acid] is the best
known. BIBR1532 is a noncompetitive inhibitor of TERT and
hTR responsible for the reduction of telomere length, inhibi-
tion of cell proliferation, and induction of senescence (255).
The antisense oligonucleotide imetelstat or GRN163L, a lipid-
conjugated, 13-mer oligonucleotide sequence that is comple-
mentary to hTR has shown good results in vitro (41, 100,
135, 161, 218) and has been tested in 14 clinical trials.
Regarding immunotherapy, different approaches are cur-
rently under development. The idea behind this strategy is
to sensitize immune cells to tumor cells expressing hTERT

MDSCs Th1 cells

IFN-γ, TNF-α

NK cells

TGF-β
M1-

Macrophages

Tumor cell Senescent tumor cell Stromal cell Blood vessel Lymphatic vessel

FIGURE 5. Noncell-autono-
mous modulation of senes-
cence in cancer. Within the tu-
mor microenvironment, senes-
cent tumor cells can promote
both the recruitment and the
activation of several immune
populations including M1 mac-
rophages, natural killer (NK)
cells, and Th1 cells through the
SASP. Such tumor-infiltrating
immune subsets can restrain
tumor progression by mediat-
ing the clearance of senescent
tumor cells and by promoting
senescence in the neighboring
cells. Conversely, myeloid-de-
rived suppressor cells (MDSCs)
are able to block the senes-
cence induction and/or the an-
titumor immunity.
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peptides as surface antigens via the human leukocyte anti-
gen (HLA) class I pathway. Different clinical trials with
immunological peptides are ongoing, and among the most
promising is the one testing GV1001 (tertomotide). Al-
though at the moment, there are still no telomerase inhibi-
tors used in the clinic, this therapeutic approach represents
one of the most promising.

B) THERAPEUTIC MODULATION OF CELL CYCLE MACHINERY. The repro-
gramming of cell cycle is a fundamental hallmark of the
senescence response. Progression to the cell cycle is con-
trolled by a complex machinery composed by a family of
protein kinase complexes, wherein each complex is formed
by a catalytic subunit, the CDK, and its essential regulatory
subunit, the cyclin (165, 294). Each stage of the cycle is
controlled by the activity of a unique combination of cyclins
and CDKs. The induction of senescence is characterized by
an increased expression and the subsequent accumulation
of CDKs inhibitors such as p16INK4a, p15, p27, and
p21CIP1/WAF1 (207, 283). This observation had brought
up the idea that compounds able to enhance the levels of
CDK inhibitors or drugs that inhibit CDKs may be used for
prosenescence therapy for cancer.

One of the first indications comes from the results ob-
tained with the SKP2 inhibitors. Skp2 is a F-box protein
constituting one of the four subunits of the Skp1/
Cullin-1/F-Box (SCF) ubiquitin E3 ligase complex that
regulates apoptosis, cell cycle progression, and prolifer-
ation by promoting the ubiquitination and degradation
of p27 (239). Several compounds and small molecules
inhibitors of Skp2 or Skp2SCF complex have been iden-
tified (reviewed in Refs. 53, 202). Among those, a small
molecule called compound A targets Skp2SCF E3 ligase
activity toward p27 ubiquitination (59) and the small
molecule MLN4924, which affects the formation of the
Skp2SCF complex (303). Currently, MNL4924 (pevone-
distat) is tested in two different phase I clinical trials for
the treatment of lymphoma and multiple myeloma and
for nonhematologic malignancies, respectively. The
modulation of the p21 activity has shown to have a sim-
ilar effect in inducing the senescence response. Inhibition
of ZNF313, a novel cell cycle activator with an E3 ligase
activity for p21WAF1, profoundly delays the cell cycle
progression and accelerates p21WAF1-mediated senes-
cence (147).

SASP
reprogramming

MDSCs

aCXCR2

Pro-Senescence
therapy

Senolytic
therapy

Tumor cell Senescent tumor cell Stromal cell Blood vessel Lymphatic vessel

Apoptic
tumor cell

Apoptic senescent
tumor cell

M1-macrophage Th1 cell NK cell

FIGURE 6. The “two-punch” approach. Pharmacological
reprogramming of the SASP may increase the antitumor
immune response upon treatment with prosenescence
therapies. Senolytic therapies may remove senescent tu-
mor cells in tumors where senescence surveillance is im-
paired to avoid negative effects induced by the SASP.
Anti-CXCR2 strategies, limiting MDSC recruitment to the
tumor, may favor senescence induction and/or the anti-
tumor immunity.
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Other compounds that are currently investigated for the
ability to induce senescence by modulating the cell cycle
machinery are the CDK inhibitors. These compounds are
known to prevent the phosphorylation of retinoblastoma,
thus arresting the cell cycle (50, 203) and determining a
state of quiescence. However, recent findings have demon-
strated that some of these CDK4/6 inhibitors, such as pal-
bociclib, ribociclib, and amebaciclib, are able to induce se-
nescence. Even if the mechanisms responsible for the induc-
tion of the senescence response over quiescence are not fully
clarified yet (314, 359), these compounds are currently un-
der clinical evaluation. In particular, PD0332991 (palboci-
clib), LEE011 (ribociclib), and LY2835219 (amebaciclib)
are in phase I–II clinical trial and they have been tested
alone or in combination with chemotherapy.

The inhibition of Cdk2 could represent another strategy to
induce senescence. A recent study has indeed demonstrated
that the pharmacological inhibition of Cdk2 induces Myc-
dependent senescence in various cell types (45). Therefore,
Cdk2 may be regarded as a potentially therapeutic target
for cancer therapy, and the several Cdk2 inhibitors that are
currently in clinical development (282) may represent a
valid class of prosenescence compounds for cancer therapy.

C) P53 AND MYC TARGETING. Because of the impact of p53 in the
senescence process, targeting p53 either directly or indi-
rectly may represent a potential approach in the prosenes-
cence therapy. Compounds and small molecules that acti-
vate p53 and/or its pathway are currently under develop-
ment. In tumors that retain wild-type p53, one of the
approaches that are being tested is to inhibit the MDM2/
p53 interaction, enhancing p53 function. The discovery of
nutlin, a specific inhibitor of the p53/MDM2 interaction
[Vassilev et al. (325)] has inspired other researchers to de-
sign new MDM2 inhibitors with higher selectivity and po-
tency and an improved pharmacokinetics. This has led to the
discovery of RG7112 (RO5045337) (332), the first MDM2
inhibitor to be advanced into phase I human clinical trials (13,
332) and others such as RG7388 (99), MI-77301 (338), MI-
888 (364), AMG-232 (307), AM-7209, DS-3032b (18), Ser-
demetan (JNJ-26854165), and the Nutlin family members
RO5503781, RO5045337, RO6839921, RO683992 (33),
and UBX0101 (167).

Another strategy that is currently under investigation is to
target SIRT1, a deacetylase involved in the regulation of
p53 activity. Indeed, SIRT1, by deacetylating p53, leads to
its ubiquitination and degradation, thus suppressing its
function (216, 326). Several SIRT1 inhibitors such as sirti-
nol (250), suramin (280), tenovins (197), 3,2=,3=,4=-tetra-
hydroxychalcone (174), EX-527 (240), and cambinol (154)
have been demonstrated to induce senescence in preclinical
tumor models (323). In tumors with mutant p53, the use of
small molecules that restore wild-type activity, such as CP-
31398 (124, 206), PRIMA-1 (262), MIRA-1, and APR-246

(PRIMA-1 analog) (43, 231) have been shown to promote
cellular senescence. APR-246 is now in clinical trial in com-
bination with carboplatin in ovarian cancer.

In tumor cells lacking p53, the use of adenoviral vector of
p53 have been shown to induce senescence (295). The first
attempt to perform p53 gene therapy in humans was made
by Jack Roth in 1996. Since then, several patients have
received p53-based gene therapies in clinical trials mostly in
the United States and in China, but although the use of this
strategy is now widespread in China (295), it has not been
approved yet in the United States (56). Gendicine and
H101, two recombinant adenoviruses engineered to ex-
press wild-type/p53, have been approved in China for the
treatment of head and neck squamous cell carcinoma in
combination with chemotherapy, but they have not re-
ceived the approval of the Food and Drug Administration.

Among other compounds showing p53-mediated senes-
cence is Dasatinib, a Src and c-Kit kinase inhibitor that is
currently used in the clinic (103).

Another transcriptional factor well known for its role in
regulating cellular proliferation, growth, differentiation,
and survival and is often found deregulated in cancer is
c-Myc. Myc is viewed as an antisenescence oncogene, and
different strategies targeting Myc have been shown to in-
duce a senescence response (357). Small molecules such as
10058-F4 (164) and its derivatives (164) as well as RNA
interference (RNAi) technologies (69, 256) are currently
tested at the preclinical level.

A promising class of compounds found to suppress MYC
transcription, thereby enhancing senescence, are repre-
sented by BET protein bromodomain inhibitors such as JQ1
or CPI-0610 and are currently tested in clinical trials in
different cancer patients (87, 118).

D) IMMUNOTHERAPY. Immunotherapies have been also linked to
senescence induction in cancer. The presence of myeloid
cells in the tumor bed promotes prostate tumor progression
by opposing senescence in vivo (94). In addition, myeloid
cells suppress the recruitment and activation of cytotoxic T
cells (CTLs) and so are bona fide MDSCs (318, 319).
MDSCs are a phenotypically heterogeneous cell population
that has common biological activity in the suppression of
the anticancer immune response, particularly T cells. My-
eloid cells differentiate in the BM and are recruited to the
tumor bed by cytokines and chemokines, which could also
promote the suppressive phenotype (131). MDSCs mediate
senescence evasion in prostate cancer through the release of
IL-1 receptor antagonist (IL-1RA) into the tumor microen-
vironment. IL-1 receptor signaling that is essential for the
establishment of PICS, and its block determines senescence
evasion. Interestingly, patients with high IL-1RA tumor lev-
els did not respond to chemotherapy-induced senescence
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(docetaxel) and showed a short disease-free survival com-
pared with patients with normal IL-1RA levels. Taken to-
gether, these findings demonstrate that senescence in cancer
can be antagonized in a noncell-autonomous manner by a
subset of tumor-infiltrating immune cells. Importantly, in-
terfering with MDSC recruitment in the tumor bed with
CXCR2 antagonist potentiates senescence induced by do-
cetaxel (94). An intriguing aspect of the role of MDSCs in
cancer is that their abundance in biopsies has prognostic
relevance in cancer patients (92). Several studies demon-
strate that the number of circulating MDSCs correlates with
poor prognosis in patients affected by head and neck, mel-
anoma, breast, lung, and prostate cancers (92, 333, 342).
Moreover, as anticipated, MDSCs can affect tumorigenesis
not only by blocking senescence induction in cancer cells,
but also by additional mechanisms that involve immuno-
suppression in the tumor microenvironment. Their suppres-
sive activity is mediated by a variety of mechanisms, mostly
involving arginase, inducible nitric oxide synthase, ROS,
TGF-�, IL-10, and prostaglandin E2. As a result of this
suppressive activity, CTLs can be tolerized and thus lose
their effector function (40, 131). Finally, MDSCs are also
involved in a whole array of nonimmunological functions,
such as the promotion of angiogenesis, tumor local inva-
sion, and metastases. Indeed, MDSCs produce MMPs that
can support tumor cell invasion by directly promoting tu-
mor angiogenesis and lymphangiogenesis (95, 237, 297,
354). Several chemotherapies can suppress MDSC count,
and it is postulated that this may be critical to benefit from
such treatments (184, 306). However, following anticancer
treatments, the frequency of MDSCs does not decline to the
level seen in tumor-free mice and healthy human subjects.
Moreover, tumor recurrence after several treatments corre-
lates with re-expansion of MDSCs (81). Therefore, immu-
notherapies that decrease the trafficking or function of my-
eloid cells in the tumors may not only enhance the efficacy
of prosenescence therapies but also limit the additional pro-
tumorigenic features of MDSCs (FIGURE 6). Many cancer
immunotherapies based on vaccination or T cells reactiva-
tion in cancer do not cause cytotoxic cancer elimination but
arrest cancer growth or induce slow cancer regression. Of
note, a recent paper demonstrates that autologous infusion
of tumor antigen–specific CD4 Th1 cell that produces
IFN-�, and TNF-� induces senescence in RIP1/tumor anti-
gen 2 pancreatic cancers. This arrest occurs in the absence
of significant T cell infiltration and is independent of either
CTL (38). Although data in human cancer patients still do
not exist, this paper suggests that autologous infusion of T
cells and the chimeric antigen receptor T cell therapy may
work by inducing senescence in cancer. Another recent re-
port demonstrates that T cell–activating therapies based on
CD137 antibodies enhance the efficacy of prosenescence
compounds in a xenograft model of melanoma (330). Fi-
nally, senescent tumor cells can be employed as an antitu-
mor vaccine. Indeed, injection of senescent tumor cells into
tumor-bearing mice induces an antitumor CTL response,

which potentiated the effects of radiation, resulting in elim-
ination of established tumors (226). Thus, treatments that
combine different immunotherapies with prosenescence
compounds and novel trials are ongoing to validate the
relevance of these findings in patients affected by different
tumors.

E) SASP REPROGRAMMING. As discussed above, SASP has pro-
found effects on the tumor microenvironment, and it rep-
resents a promising target for cancer therapy. Several
groups have demonstrated that therapies reprogramming
the SASP can enhance the tumor suppressive role of senes-
cence in cancer and restrain the negative effects of the SASP.
For instance, we discussed previously in this review that
Stat3 regulates the SASP of PICS, promoting an immuno-
suppressive tumor microenvironment (sect. VD1B). Phar-
macological inhibition of Jak2 in this context induces SASP
reprogramming, leading to the reactivation of the senes-
cence immune surveillance (319) (FIGURE 6). mTOR is a
critical regulator of the SASP, and its inhibition with rapa-
mycin suppresses the SASP by regulating the translation of
the MK2 kinase through 4EBP1 (158). Although mTOR
inhibition prevented the protumorigenic effects of the SASP
in vivo, it also interfered with the induction of paracrine
senescence and senescence surveillance, two important tu-
mor suppressive arms of senescence (158). Moreover, the
mTOR inhibitor rapamycin through reduction of IL-1�
translation and NF-�B signaling reduces SASP (IL-6) and
impairs the ability of senescent fibroblast to support tumor
growth in vivo (196).

BRD4, a member of the BET family, is a chromatin
reader whose role in the activation of the SASP and in the
subsequent immune clearance is well documented, and its
inhibition with JQ1 or analogs impairs both processes in
a model of NRAS driven OIS in vitro and in vivo (315).
However, as previously underlined, BET inhibition with
JQ1 is also a driver of cellular senescence (87, 118),
underlining, once again, the dual role of the SASP and
senescence itself in cancer and the need of coupling prose-
nescence and senolytic approaches. The HMG-coA re-
ductase inhibitor simvastatin is known to attenuate in-
flammation and retard tumor growth, and this effect is
mediated by downregulation of the SASP. In fact, simva-
statin suppresses breast cancer cell proliferation induced
by senescent cells (209).

Finally, antagonists of CXCR2 (FIGURE 6), which acts as
a receptor for a number of SASP cytokines, result in the
reshaping of the tumor infiltrating immune cells impact-
ing on cellular senescence and TIS, as discussed in section
VD1B.

Altogether, these studies highlight the importance of strat-
egies aiming at the SASP reprogramming as potential cancer
therapies. Thus, identification of compounds that can atten-
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uate the “dark side” of the SASP without affecting its tumor
suppressive function could be used in the clinic to enhance
the therapeutic efficacy of prosenescence compounds.

2. Selective elimination of senescent cells

As already discussed in this review, senescence can act as a
double-edged sword in different physiological contexts.
SASP can indeed have anti- as well as protumorigenic ef-
fects, and therefore, selective killing of senescent tumor cells
has been proposed to prevent the relapse of tumors treated
with chemo- or radiotherapy and to reduce the risk of me-
tastasis (302). Moreover, in mouse, the accumulation of
senescent cells in normal tissue induced by the chemother-
apy has been recently linked to a premature aging pheno-
type and to cancer-related fatigue, a syndrome commonly
experienced by patients treated with chemoradiotherapy
(88). Notably, a recent study demonstrates that the clear-
ance of senescent cells in doxorubicin-treated mice not
only decreases the incidence of tumor recurrence and
metastasis, but also reduces several short- and long-term
effects of the drug, such as BM suppression, cardiac dys-
function, and cancer-related fatigue (88). Thus, the use of
senolytics may have positive effects for chemotherapy-
treated patients in terms of reduction of tumor relapse
and amelioration of the side effects due to the drug (183)
(FIGURE 6). Nowadays, there are few examples of effec-
tive senolytic compounds.

A) BCL-2 PROTEIN FAMILY INHIBITORS. Senescent cells are resistant to
apoptotic stimuli and this feature may contribute to their
accumulation in aged tissues and following chemother-
apy. Bcl-2 protein family, which includes Bcl-2, Bcl-W,
Bcl-XL, and Mcl-1, plays a central role in the regulation
of cell death–related processes including autophagy and
apoptosis and are found upregulated in senescent cells
(44); therefore, compounds that target these proteins are
intensively studied as senolytic drugs. In particular, in-
hibitors of Bcl-2 family have shown the potential to alle-
viate age-related diseases, such as in the case of athero-
sclerosis, and enhance radioprotection and rejuvenation
of the hematopoietic system in mice (55, 63, 88). One of
the first molecules to be identified as inhibitor of Bcl-W
and Bcl-XL proteins, the ABT-737, induced apoptosis
preferentially in senescent cells both in vivo and in vivo
(358) and opened the door to new strategies for the treat-
ment of age-related pathologies. However, because of the
poor oral availability of ABT-737, an orally available
analog, ABT-263 (navitoclax), was identified (368),
which paved the way for clinical trials of the first gener-
ation of Bcl-2/Bcl-XL inhibitors (317). However, these
drugs have been associated to severe toxicities in cancer
patients (271, 344), and for this reason, new compounds,
such as A1331852 and A1155463, have been currently
tested in the hope to find better candidates for translation
into clinical applications (367).

However, the efficacy of these compounds is variable, and it
depends on the genetic background of the senescent tumor
cells being effective in some types of senescence but not in
others. ABT-737 exerted activity in different tumor context
as single agent or in combination with chemo- or radiother-
apy (317).

B) DASATINIB AND QUERCETIN. Dasatinib is a Food and Drug Ad-
ministration–approved anticancer drug known for its abil-
ity to induce apoptosis. Interestingly, Dasatinib can work as
senolytic compound when combined with Quercetin (a fla-
vonol) (143). It has been shown to be effective in killing
senescent preadipocytes, endothelial cells, and mouse em-
bryonic fibroblasts (MEF) in vitro (368). These findings
demonstrate the efficacy of senolytics to alleviate age-re-
lated symptoms, including dystonia, loss of grip strength,
and urinary incontinence (369), and to prevent osteoporo-
sis progression (115).

C) FOXO4 INHIBITORS. A recent paper has identified Forkhead
box protein O4 (FOXO4) as an alternative regulator of
viability in senescent cells. FOXO are a class of transcrip-
tion factors activated downstream of IGF-1. FOXO4 inter-
acting with p53 plays a central role in senescent cell viability
(143). The design of a FOXO4 peptide (FOXO4-DRI) that
perturbs the FOXO4 interaction with p53 caused p53 nu-
clear exclusion and then senolysis. The FOXO4-DRI pep-
tide neutralized doxorubicin-induced accelerated aging and
restored fitness, fur density, and renal function in treated
mice (19). However, therapeutic peptides have some sig-
nificant drawbacks related to their stability and short
half-life (123). Moreover, it is currently unknown
whether this outcome would also occur with repeated
senolytic administrations, and studies that aim to mea-
sure this would be warranted.

D) OTHER SENOLYTIC COMPOUNDS. Other compounds that were
recently shown to have senolytic properties are piper-
longumine, nicotinamide riboside, danazol, fisetin, and
HSP90 inhibitors. Piperlongumine is a natural product
that has been shown to induce caspase-mediated apopto-
sis in senescent cells (363). Nicotinamide riboside, a pre-
cursor of nicotinamide adenine dinucleotide (NAD�),
drives an increase in cellular levels NAD�. Aged mice
treated with nicotinamide riboside showed increased
lifespan and rejuvenation of muscle stem cells (363). Da-
nazol is a synthetic steroid molecule that has telomere-
elongating capacity and has been used to antagonize ac-
celerated telomere attrition (320). Fisetin is a plant poly-
phenol that reduces cognitive deficits in old mice
restoring impaired synaptic function, stress, and inflam-
mation related to aging (367). Finally, HSP90 inhibitors
have recently be shown to be effective in delaying the
onset of aging related symptoms in a mouse model of
progeria (129).
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VI. SENESCENCE OF THE IMMUNE
SYSTEM

Cellular senescence can occur also in immune cells, and
through this mechanism, the immune system, can guide
immune cell function and fate decision. Immunosenescence
refers to a series of changes in the development and function
in both the humoral and cell-mediated immune branches of
the immune system that contribute to an increased suscep-
tibility to disease in the elderly.

Characteristics of innate immune senescence are a reduc-
tion in the antigen processing and presentation capacity
associated with a decreased response to stimuli but keeping
a chronic activation state. Adaptive immune senescence is
associated with loss of T or B cell receptor repertoire diver-
sity and impaired immunological memory formation. This
phenomenon is the cause of an inefficient control of infec-
tions and tissue damage with age, as well as of an impaired
tumor immunosurveillance that leads to an increased risk of
tumorigenesis in old individuals. However, the senescence
in the immune system can also occur independently by the
age. This aspect and more details about the features of
immunosenescence in innate and adaptive immune re-
sponse are discussed in section V, A and B.

A. Innate Immune Response

1. Macrophages

Macrophages are key immune cells in the protection of our
body from pathogens, and the most abundant immune cell
type in tumor microenvironment of several cancers (for re-
view, see Ref. 246). The existence of senescent macrophages
in vivo is still under debate. Cudejko et al. and Fuentes et al.
(128) reported the expression of senescence markers, such
as p16INK4a and p14/p19ARF, in murine BM-derived mac-
rophages and in human adipose tissue macrophages. Inter-
estingly, gene expression analysis of p16INK4a-deficient BM-
derived macrophages showed a dramatic downregulation
of genes associated with proinflammatory macrophages
and upregulation of genes associated with anti-inflamma-
tory macrophages (128). Accordingly, primary macro-
phages that can become senescent after 2 wk of in vitro
expansion, or upon ectopic p16INK4a expression, revealed
an anti-inflammatory polarization (236) in mouse and hu-
man. However, a recent publication reports that expression
of p16Ink4a and positivity to �-galactosidase in macro-
phages is acquired as part of the physiological response to
immune stimulation and not sign of cellular senescence
(145). Altogether, these findings point out an unexpected
role of p16INK4a in myeloid cells and suggest his potential
involvement in the differentiation and polarization of the
myeloid lineage.

2. NK cells

NK cells are lymphocytes that participate in the immuno-
surveillance thanks to their cytotoxic activity and specific
cytokine profile (52). A less known role of NK cells is during
embryo implantation and through the first trimester of
pregnancy. Their role is still elusive. It has been reported
that during these phases NK cells, acquire senescence fea-
tures by the upregulation of p21Cip1/Waf1 and pHP1-�. The
activation of NK cells through CD158d, by a soluble non-
classical major histocompatibility complex molecule se-
creted by fetal trophoblasts, induces permanent cell cycle
arrest, DNA damage accumulation, and chromatin remod-
eling. Then, senescent NK cells start to produce a specific
SASP that dictates the neoangiogenesis during embryo im-
plantation (264).

B. Adaptive Immune Response

1. T and B lymphocytes

T and B lymphocytes are the mediators of adaptive immune
response. During aging, they are endangered to replicative
senescence because of their innate highly proliferative ca-
pacity. In vitro, T and B cells, upon stimulation, progres-
sively undergo a series of cell division and they can become
exhausted or exhibit features of cellular senescence (110,
163). Exhausted lymphocytes have short telomeres, cannot
proliferate even in the presence of costimulatory molecules,
are resistant to apoptosis, but not metabolically active,
whereas senescent lymphocytes are still metabolically active
and express high levels of senescence immunological mark-
ers (80, 110, 343). Indeed, although senescent lymphocytes
are completely anergic, they are still active and abundantly
produce proinflammatory cytokines and active mediators
for NK cells (16).

Senescent T lymphocytes harbor, together with the higher
expression of p16 and p21, a specific secretome character-
ized by IL-6/IL-8/IL-10/TGF-�/IFN-�/TNF-� production,
downregulation of surface markers such as CD28 and
CD27 and upregulation of PD1 (329). Interestingly, senes-
cence in T lymphocytes can also be triggered in a paracrine
manner by a deregulated inflammatory environment.
TNF-� or IFN-�, typical inflammatory cytokines, can in-
duce premature senescence of CD8 T lymphocytes through
the activation of p38MAPK and downregulation of the ex-
pression of telomerase (93, 198). Persistence of proinflam-
matory cytokines and antigen stimulation can also drive
immune senescence in T lymphocytes by the loss of CD28
expression. CD28 is a costimulatory molecule expressed by
T lymphocytes that regulate their activation and prolifera-
tion. In cancer and aging, as well as in chronic immune
degenerative disorders, such as juvenile idiopathic arthritis,
myelodysplastic syndromes, or rheumatoid arthritis, the
persistent stimulation of lymphocytes leads to loss of CD28
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that can encompass senescent and skewing to cells with
regulatory functions such as T regulatory cells (Tregs) (106,
110, 111, 279, 346). The expression of CD28 in human T
cells is mediated by the downregulation of the p53�, a splic-
ing variant of p53 (233). Growing literature suggests that
induction of senescence in the immune compartment is also
a mechanism used by the immune system to regulate the
immune response. For instance, Tregs, known to be crucial
for the maintenance of the immune self-tolerance and ho-
meostasis (for review, see Ref. 171), induce senescence in
effector T cells, limiting their proliferation by the activation
of the p38MAPK and p53 signaling pathways that control
both the cell cycle inhibitors p16INK4a and p21WAF1
(355, 356). In vivo, p53 protein levels increase in CD4� T
cells upon TCR activation, and several p53 binding sites are
present on the promoter of FoxP3, the transcription factor
of Tregs (181). Recently, it has been reported that human
Tregs mediate functional changes and induce senescence in
responder T cells by the regulation of STAT1/STAT3,
ERK1/2, and p38 signaling and by metabolic competition
during cross-talk (210).

This finding reveals the complex interplay between senes-
cence and immune cell fate. Targeting factors that induce T
cell senescence is a checkpoint for immunotherapy against
cancer and other associated diseases.

VII. MICROBIOTA AND SENESCENCE

The microbiota is the ensemble of the microorganisms liv-
ing in symbiosis with the host (109) and plays fundamental
roles in many homeostatic processes. The host and its mi-
crobiota can be referred to as a new entity, the “superor-
ganism,” which is endowed with enlarged genetic and met-
abolic potential (102). The microbiota and its associated
metabolism are fundamental to a number of physiological
functions and imbalances in the bacterial community,
termed dysbiosis, have been described and correlated to a
number of pathological situations, including cancer (134).
Microbial dysbiosis can affect the tumor physiology
through direct and indirect mechanisms, such as a direct
effect on tumor cell proliferation and apoptosis, an effect
mediated by the immune system or acting at the level of the
host metabolism (134). Some examples of this are the evi-
dence that Fusobacterium nucleatum, enriched in human
colorectal cancer (CRC), exacerbates intestinal tumorigen-
esis in vivo by inducing a proinflammatory signature in
MDSC (187). Moreover, increasing evidence shows that the
microbiota is important for the efficacy of both classical
chemotherapy (328) and of immune checkpoint inhibitors
(anti–PD-L1, anti–CTLA-4, and anti-PD1) (298, 327). An
effect of the microbiota in the modulation of senescence has
been proved for the first time by Yoshimoto and colleagues
(360). The intestinal microbiota plays a fundamental role in
the metabolism of bile acids because bacteria can mediate
the conversion of primary bile acids in secondary bile acids,

which are reabsorbed and enter the enterohepatic circula-
tion, or their deconjugation that leads to their excretion
(39). Yoshimoto and colleagues showed that in obesity-
associated HCC there is a gut dysbiosis characterized by an
expansion of members of the Clostridium cluster. This leads
to increased systemic levels of deoxycholic acid. This bile
acid induced DNA damage in HSC, driving the establish-
ment of senescence and, consequently, the overexpression
of proinflammatory cytokines, namely IL-6, GRO�, and
CXCL9. These SASP components favored HCC progres-
sion in mice treated with a chemical carcinogen that causes
oncogenic Ras mutations (360). Genetic ablation of IL-1�
as well as microbiota depletion through antibiotic treat-
ment significantly suppressed SASP of HSC and growth of
HCC. These results identify in the microbiota/deoxycholic
acid/SASP axis the responsible events in driving HCC pro-
gression. In addition to this, colibactin-producing Esche-
richia coli are frequently associated with CRC. Cougnoux
and colleagues have shown that this bacterium promotes
CRC growth in vitro in the AOM/DSS mouse model of
colon carcinogenesis and in specimens of human colon can-
cer biopsy through the induction of a SASP rich in growth
factors (76). Colibactin-producing E. coli sustains, through
c-Myc expression, the upregulation of miR-20a-5p in intes-
tinal epithelial cells. This miRNA negatively regulates the
translation of SENP1, an inhibitor of p53 SUMOylation. As
a result, senescence is established, and the SASP, rich in
hepatocyte growth factor, sustains CRC growth (76).

BOX 1. Call-out Box for Clinicians
● Cellular senescence is defined as a stable state of cell cycle

arrest that can occur in many different setting.
● Senescent cells are characterized by morphological changes,

altered gene expression, and secretion of a plethora of fac-
tors referred to as senescence-associated secretory pheno-
type, which is responsible for the paracrine effects of senes-
cent cells.

● Senescence is observed in physiological, as well as in patho-
logical, processes. It plays key roles in embryogenesis, tissue
repair, and tissue remodeling, and its involvement has been
reported in fibrosis.

Senescent cells are known to accumulate during aging and to
participate in age-related pathologies, among them atheroscle-
rosis, osteoarthritis and osteoporosis, glaucoma, diabetes,
and neurodegeneration diseases. Moreover, senescence has
been shown to have a double effect in cancer by suppressing
tumor development in early stage and contributing to tumor
development in later stage and tumor relapse after chemother-
apy.
● Therapies focusing on the modulation of the senescence

response are currently in preclinical or clinical phase. In par-
ticular, approaches aimed at eliminating selectively the senes-
cent population (senolytic therapies) or at inhibiting the se-
nescence-associated secretory phenotype (SASP) could be
used to prevent or treat age-related disease, whereas the
enhancement of the senescence (prosenescence therapies)
has been proposed as new cancer treatment. In the case of
cancer treatment, the sequential use of prosenescence and
senolytic therapies could represent winning strategies by
avoiding the negative side effects of SASP in tumor.
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A recent work shows that the gut microbiota affects the BM
niche and how this interaction is altered by systemic chronic
hypoxia in patients with cyanotic congenital heart disease.
In these patients, chronic hypoxia results in a dysbiotic gut
microbiota with a reduction in Lactobacilli and a concom-
itant accumulation of D-galactose in the BM. This metab-
olite, together with the hypoxic microenvironment, drives
senescence in BM mesenchymal stem cells, thus compromis-
ing its fundamental role in the self-renewal of the stem cell
compartment of the BM. Administration of Lactobacilli in
chronic hypoxic rats reduced both D-galactose and BM
mesenchymal stem cell senescence (347). This influence of
the gut microbiota on the BM niche could be relevant for
the hematopoietic stem cell transplantation field.

These few works suggest how the microbiota could play a
role in driving the senescence response and could be consid-
ered a possible modulator of this process, opening new and
fascinating perspectives in the senescence field.

VIII. FUTURE DIRECTIONS

As largely discussed in this review, both cell-autonomous
and noncell-autonomous mechanisms can account for se-
nescence evasion. Thus, identification of new treatments
that elicit senescence induction in cell that bypass senes-
cence may be of fundamental importance to limit tumor
progression. Several prosenescence compounds are cur-
rently in the clinic (175). In the past, several in vivo evi-
dences have demonstrated that senescence works as a po-
tent tumor suppressive mechanism. However, recent find-
ings have highlighted an unexpected dark side of the
senescence induction in cancer may promote relapse upon
chemo-radio or targeted therapies by demonstrating that
the persistence of senescent cells in tumors (88). A step
forward to reconcile this controversy is represented by the
use of a multiple targeted therapies that simultaneously or
sequentially induce senescence in tumor cells and eliminate
them by either activating the tumor immune response or by
inducing apoptosis in a cell-autonomous manner (FIGURE
6). In this regard, the use of senolytic therapies may enhance
the efficacy of prosenescence therapies by removing senes-
cence cells from the tumor. Even a single dose of this ther-
apy could be administered concomitantly or after prosenes-
cence compounds treatment (337, 351). Therefore, the
identification of therapeutic targets specifically expressed
by senescent cells and absent in proliferating cells would be
highly desirable. Laboratories all over the world are work-
ing to identify senescence-associated membrane markers
that can be targeted by antibodies. As reported previously,
NK cells target and kill senescent cells via NKG2D ligands
(275). Because many tumor cells also express NKG2D li-
gands, such ligands have been suggested to be a good target
for humoral-mediated therapeutic approaches in cancer
(304) and, therefore, adapted for senescent cell clearance to
obtain a win/win result. On the same topic, the identifica-

tion of specific membrane targets for senescent cells could
lead to the generation of chimeric antigen receptor T cells
with a great potential as an anticancer therapy. These find-
ings highlight a potential immunotherapeutic strategy for tar-
geting tumor senescent cells. In conclusion, we believe that a
prosenescence therapy associated with a senolytic treatment
could represent a promising therapeutic strategy to treat can-
cer and that, in the near future, novel therapies based on this
combination could become the new standard of care. More-
over, the involvement of senescent cells during aging and age-
related diseases suggests that the use of senolytic compounds
might play a major role to extend health span. However, long-
term interventions against senescent cells, necessary in the case
of aging, should be designed to avoid unnecessary side effects
relative to interfering with beneficial cellular senescence, as
during tissue repair and remodeling. Cautious approaches
aiming at interfering with only subsets of senescence, for ex-
ample, in specific age-related pathologies, should be paving the
way for the use of senolytics as antiaging strategies.
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