Age

Imagine living in a world where it was completely normal to live well beyond one hundred years of age. A world where it was completely normal for a one-hundred-and-twenty-year-old body to have the functionality and appearance of an Olympic athlete.

If that were the norm and you found yourself aging like most people do today, to maybe 80, how would that make you feel? A life where you found yourself shuffling behind a walker or being pushed in a wheelchair by a caretaker from seventy-five until you breathed your last painful breath at 80. A life where you had to stop working and retire at sixty-five because that was all that was expected of you in your condition, all while everyone else around you was living beyond one hundred and twenty years as mentioned above.

How would that make you feel?

The Question

Read the following carefully and then answer the QUESTION.

Only 5–10% of all cancer cases can be attributed to genetic defects, whereas the remaining 90–95% have their roots in the ENVIRONMENT and LIFESTYLE.

Our skin(outside/epidermis) covers an average area of 18.75 square feet. Our gastrointestinal tract which makes up the rest of the humans environmentally exposed surface area covers an average area of 377 square feet.

Our GI tract which is twenty(20) times larger than our external world is just one thin and very delicate layer of dermis compared to our external environment which is made up of an incredibly durable five(5) layers that can withstand all manner of insult and injury.

The average human consumes 1,750 pounds of food per year passing over/through that tract, which is actually external though most consider it internal. In actuality, the inside of our body doesn’t start until the small intestine.

QUESTION: According to the aforementioned information, what is the single greatest cause of environmentally caused cancer based on exposure and lifestyle choices?

A Momentary Channeling of Ray Bradbury

It’s a gentle Southern California afternoon just a few miles from the coast of Long Beach. The sound of birds calling out in a harmonious sense of discord. The ants in front of me on the hot concrete mill back and forth to and fro, gently greeting each other for just a moment as they continue on their journey.

I look up to see the leaves of my Betula Birch, which I planted some fifteen years ago—it may have even been sixteen. The leaves bristled back and forth quickly, then slowly, and back again as the gentle breeze from the south worked them up into an audible frenzy. Which reminds me…I need to trim Betty a little.

As I look down at the 60-year-old warm concrete beneath my feet, I’m reminded that my father and his father before him may have very well stood here, just like me, looking at this same piece of ground, the same sky, breathing in that same sense of awe that I am experiencing.

They may have even experienced many years earlier, that same joy I feel…Sitting here today.

Wulzen Anti-Stiffness Factor

The Wulzen factor, also known as the “anti-stiffness factor,” is a compound called stigmasterol, which is present in raw milk and sugarcane juice. Dr. Rosalind Wulzen discovered stigmasterol. Stigmasterol plays a crucial role in the assimilation of calcium and phosphorus by promoting their proper utilization and preventing their excessive deposition in soft tissues. It helps maintain the balance of these minerals in the body, ensuring that calcium and phosphorus are adequately absorbed and utilized for bone health and metabolic processes. This regulation prevents calcification and the associated negative effects on various organs and tissues, contributing to overall health and the prevention of conditions such as atherosclerosis, chronic kidney disease, liver disease, neurological disorders, cognitive decline, and other related disorders.

Stigmasterol is a fat-soluble nutrient that combats arthritis and alleviates symptoms such as pain, swelling, and stiffness. Early nutrition researchers considered it to be a vitamin-like substance, but it was never officially recognized as a vitamin by mainstream medical and government authorities. The factor is destroyed by pasteurization, leading to a debate where advocates argue that pasteurization could contribute to arthritis by eliminating this beneficial compound.

Stigmasterol, also known as a phytosterol, is a plant sterol found in various plant sources such as vegetables, legumes, nuts, seeds, and unrefined plant oils. It is also concentrated in mammalian lactates, which offers several health benefits. Firstly, stigmasterol lowers cholesterol levels by competing with dietary cholesterol for absorption in the digestive system, thereby reducing the amount that enters the bloodstream. Additionally, it exhibits anti-inflammatory properties, which are beneficial in managing chronic inflammation-related conditions like arthritis.

Stigmasterol also has antioxidant effects, protecting cells from damage caused by free radicals and potentially reducing the risk of chronic diseases. Some studies suggest that stigmasterol inhibits the growth of cancer cells, indicating possible anticancer properties, though more research is needed in this area. Furthermore, stigmasterol may contribute to maintaining bone health by influencing enzymes involved in bone metabolism. Its combined effects of lowering cholesterol and providing anti-inflammatory and antioxidant benefits also support better cardiovascular health.

Critics of pasteurization laws suggested that acknowledging the existence and benefits of the Wulzen factor would challenge the widespread promotion of pasteurized dairy products. In modern nutritional science, the Wulzen factor is not widely acknowledged, with limited contemporary research supporting its existence or efficacy. Most of the evidence comes from early studies. While raw milk advocates often cite the Wulzen factor as a reason for consuming unpasteurized dairy products, regulatory bodies continue to support pasteurization to prevent foodborne illnesses, citing the lack of scientific consensus on the benefits of the Wulzen factor.

Interestingly, both Rosalind M. Wulzen and her longtime colleague and lifelong friend Alice M. Bahrs lived almost 100 years. Both made it to 98, which is not a common feat. It would appear that they may very well have discovered a key factor in greater longevity and quality of life if it were demonstrated that they were actually smoking what they were selling. Chances are they were.

Incorporating stigmasterol-rich foods into a balanced diet may provide these aforementioned health benefits, though it’s important to consider overall dietary patterns and lifestyle for optimal health outcomes.

The Primacy of Electrolytes and Hydration on Human Function and Life

Fluids, electrolytes, and acid-base physiology play a crucial role in maintaining overall human health and well-being.

Fluids, including blood, plasma, and interstitial fluids, regulate body temperature, lubricate joints, and facilitate waste removal. Electrolytes, such as sodium, potassium, chloride, magnesium, calcium, and phosphorus, help maintain proper fluid balance, nerve function, and muscle contractions.

A delicate balance of electrolytes is essential for optimal organ function, including heart rhythm, nerve transmission, and muscle contraction.

Acid-base physiology regulates the body’s pH levels, ensuring that the blood remains slightly alkaline (pH 7.35-7.45).

Imbalances in fluids, electrolytes, and acid-base physiology can lead to a range of conditions, from mild dehydration to life-threatening illnesses such as sepsis, electrolyte imbalance, and acid-base disorders.

Furthermore, disruptions in these physiological processes can have broad impacts on overall health, affecting energy production, immune function, and even cognitive performance. Maintaining proper fluid, electrolyte, and acid-base balance is essential for optimal human health and well-being.

Drink Plenty of…

What is Earth’s most abundant solvent? Why, it is water, of course. It just happens to also be Earth’s most abundant corrosive agent.

Water is highly effective in promoting various types of corrosion and weathering processes due to its widespread presence and its chemical properties. Here’s why water is considered the most abundant corrosive agent:

1. Chemical Reactivity: Water can dissolve many substances, including salts and gases, which can lead to chemical reactions that cause corrosion. For example, when water dissolves oxygen, it can form oxidizing agents that contribute to rust formation in metals.

Electrochemical Corrosion: Electrochemical reactions can occur in the presence of water, leading to the corrosion of metals. Iron rusting is commonly seen, where water facilitates the transfer of electrons between iron and oxygen.

Physical Weathering: Water contributes to physical weathering through processes such as freeze-thaw cycles. When water enters cracks in rocks and freezes, it expands, causing the rocks to break apart.

Acid Rain: Water in the atmosphere can combine with pollutants like sulfur dioxide (SO₂) and nitrogen oxides (NOₓ) to form acid rain. Acid rain accelerates the corrosion of buildings, monuments, and other structures by reacting with materials like limestone, marble, and metals.

Hydrolysis: Water can participate in hydrolysis reactions, breaking down complex minerals and rocks into simpler forms. This process is a significant factor in the chemical weathering of rocks.

Biological Corrosion: Water supports the growth of microorganisms, which can produce corrosive byproducts. Certain bacteria, for instance, can produce sulfuric acid, contributing to the corrosion of concrete and metal structures.

Given its ubiquity and its involvement in various chemical, physical, and biological processes, water is undeniably Earth’s most abundant and effective corrosive agent.

Osmosis…Water ALWAYS follows salt

Maybe you are not dehydrated. Maybe you have an electrolyte deficiency disorder that is preventing you from achieving sufficient levels of hydration no matter how much water you drink.

What would an electrolyte deficiency disorder look like you ask?

Electrolyte deficiencies can present with a variety of clinical symptoms, depending on which electrolyte is deficient. Here are some common electrolyte deficiency disorders and their clinical presentations:

1. Hyponatremia (Low Sodium)
Symptoms: Nausea, headache, confusion, fatigue, muscle weakness, seizures, and in severe cases, coma.
Causes: Excessive water intake, heart failure, kidney disease, liver disease, and certain medications.

2. Hypernatremia (High Sodium)
Symptoms: Thirst, restlessness, irritability, muscle twitching, seizures, and coma.
Causes: Dehydration, excessive salt intake, diabetes insipidus, and certain medications.

3. Hypokalemia (Low Potassium)
Symptoms: Weakness, fatigue, muscle cramps, constipation, arrhythmias, and in severe cases, paralysis.
Causes: Diuretic use, vomiting, diarrhea, excessive sweating, and certain medications.

4. Hyperkalemia (High Potassium)
Symptoms: Muscle weakness, fatigue, numbness, tingling, arrhythmias, and in severe cases, cardiac arrest.
Causes: Kidney failure, excessive potassium intake, certain medications, and tissue damage.

5. Hypocalcemia (Low Calcium)
Symptoms: Numbness and tingling in fingers, muscle cramps, spasms, seizures, and cardiac arrhythmias.
Causes: Vitamin D deficiency, hypoparathyroidism, chronic kidney disease, and certain medications.

6. Hypercalcemia (High Calcium)
Symptoms: Nausea, vomiting, constipation, abdominal pain, muscle weakness, confusion, and in severe cases, cardiac arrest.
Causes: Hyperparathyroidism, cancer, excessive vitamin D intake, and certain medications.

7. Hypomagnesemia (Low Magnesium)
Symptoms: Muscle cramps, tremors, seizures, arrhythmias, and personality changes.
Causes: Alcoholism, malnutrition, chronic diarrhea, and certain medications.

8. Hypermagnesemia (High Magnesium)
Symptoms: Nausea, vomiting, muscle weakness, low blood pressure, respiratory depression, and cardiac arrest.
Causes: Kidney failure, excessive magnesium intake, and certain medications.

9. Hypophosphatemia (Low Phosphate)
Symptoms: Weakness, bone pain, confusion, respiratory failure, and in severe cases, seizures and coma.
Causes: Malnutrition, alcoholism, diabetic ketoacidosis, and certain medications.

10. Hyperphosphatemia (High Phosphate)
Symptoms: Itching, joint pain, muscle cramps, and in severe cases, calcium deposits in tissues.
Causes: Kidney failure, excessive phosphate intake, and certain medications.

Each of these electrolyte imbalances can have serious consequences if not addressed promptly. Diagnosis typically involves blood tests to measure electrolyte levels, and treatment depends on the underlying cause and severity of the deficiency or excess.

The Potassium Problem

Most people do not get enough potassium in their diets. It is estimated that LESS THAN 2% of Americans meet the recommended daily intake of 4,700 milligrams (mg) of potassium per day

Long-term subclinical hypokalemia, where potassium levels are slightly below the normal range but not low enough to cause obvious symptoms, can still have significant effects on the body. Here are some potential effects:

Cardiovascular System:

Arrhythmias: Even mild hypokalemia can increase the risk of cardiac arrhythmias, as potassium is crucial for normal heart function.

Hypertension: Low potassium levels can contribute to high blood pressure.

Heart Failure: Chronic hypokalemia may exacerbate or contribute to heart failure in susceptible individuals.
Muscular System:

Muscle Weakness and Cramps: While severe hypokalemia causes significant muscle weakness, even subclinical levels can lead to mild muscle weakness, cramps, and fatigue.

Rhabdomyolysis: In rare cases, prolonged mild hypokalemia can lead to muscle breakdown, known as rhabdomyolysis.
Renal System:

Kidney Function: Potassium is essential for kidney function, and long-term hypokalemia can impair the kidneys’ ability to concentrate urine, leading to polyuria (increased urination).

Nephropathy: Chronic hypokalemia can contribute to kidney damage and nephropathy over time.
Metabolic Effects:

Glucose Intolerance: Potassium plays a role in insulin secretion and function. Low potassium levels can lead to glucose intolerance and potentially increase the risk of diabetes.

Metabolic Alkalosis: Chronic hypokalemia can cause metabolic alkalosis, a condition where the body becomes too alkaline, leading to a variety of metabolic disturbances.

Neuromuscular Effects:

Fatigue: Persistent low potassium can lead to general fatigue and lethargy.
Neuropathy: Although less common, chronic hypokalemia may contribute to peripheral neuropathy.
Bone Health:

Osteoporosis: There is some evidence suggesting that chronic low potassium levels may contribute to bone demineralization and increase the risk of osteoporosis.
Gastrointestinal System:

Constipation: Potassium is important for normal muscle contractions, including those in the gastrointestinal tract. Low levels can lead to decreased motility and constipation.

Potassium helps the brain send signals to the digestive system’s smooth muscles, which then contract to move food and aid digestion. Potassium channels also play a role in slow-wave production, gastric contraction, and acid secretion.

Potassium channels play a prominent role in gastrointestinal smooth muscle cells and slow-wave production. Potassium channels are involved in acid secretion and gastric contraction. Gastric functional problems such as reflux disease and motility disorder are classified as electrophysiological disorders.

The shortfall in potassium intake is largely due to dietary patterns that are low in fruits and vegetables, which are the primary sources of potassium. Increasing the consumption of potassium-rich foods like bananas, oranges, potatoes, spinach, and beans can help address this deficiency.

Dearest People of Earth

People of Earth,

My name is Michael Loomis. I am a Southern California native. I have spent almost every day of my life in Long Beach, a Los Angeles suburb. I’ve spent 51 years here, and I love it. Everything about this place.

I wanted to take a moment and talk to ALL of you today. We are living in a fabulous time, a time when more people have access to basic goods and services necessary to make life possible without overdue burdens. By no means have we solved poverty and starvation on a global scale, but we are witnessing a revolution in technology, industry, and now intelligence that is allowing us to understand better how we can meet ALL of our basic needs. Food, shelter, clothing, and health care.

Over the last few decades, we have witnessed unprecedented growth in computer technology, which has allowed us to access vast amounts of data in a very short space of time. The libraries of the world are now online, which allows our large language models to be accessed by artificial intelligence engines in a way and at a rate that the human mind could have never imagined just a few short decades ago. In no uncertain terms, we are now witnessing the advent of a new age. An Intellectual Revolution born out of the foundation of the Industrial Revolution that began in the middle of the eighteenth century.

The time has come and now is when and where we need to embrace and welcome the reality of where we are in the passage of time. We have been born into a time and space where human labor and planning for the future are becoming a thing of the past—things that our future generations will only be able to understand through the lens of history. Whether it is our children, grandchildren, or great-grandchildren, there will come a day in the near future when that last job will no longer need to be filled. No more working by the sweat of our brow to provide for our daily bread. Our basic needs. And we need to prepare for it. There will be no more inequities.

And now I imagine you have a question that has been swirling around, forming in your mind about how we are going to prepare for this inevitability. This, I imagine, is followed by another question: What are we going to do with all the time that will be freed up because of this inevitability? And if there is no more work that needs to be done, how are we going to pay for our basic needs and luxuries?

At this point, we already live in a time of luxury compared to all of recorded human history. Consider that. Now consider this: We humans are the only species on Earth that has had the inclination to take that which was once free and accessible to all and put it behind lock and key. Food, shelter, and clothing were historically accessible to all mankind long before there were jobs, payroll, banks, and human resource departments. And today, if someone down on their luck is caught taking that which is behind lock and key without paying for it, we then put them behind lock and key, giving them food, shelter, and clothing, their basic needs for free. Kind of ironic, isn’t it?

Allow me to address some of those questions about the future that are likely swirling around in your head.

First of all, just because there will be no more jobs, that doesn’t mean that there will be no work to be done. Far from it. There will be plenty for us to do to ensure that all goes well. However, it will look different. The reality is that we are all going to need to accept these changes in work and meaning because the old way will have faded off into obscurity.

No longer will a household, say a family of four, need to work forty to eighty hours a week just to meet their basic needs. And I can hear the question now, “But who’s going to pay for it all?”

This is the wrong question to ask. The right question would be, “Why would we still need to pay for it?” The answer would be that we need to remedy the problems that led to the need to pay for it and replace them with solutions that would eliminate 84% of the financial burden that requires our human resources in exchange for pay.

trillion divided by million United States Citizens is approximately $70,262.

And then there is the money that employers add to the pot that would be freed up to fund the future.

The total cost to an employer for an employee extends well beyond the hourly wage due to benefits, insurance, office space, taxes, and other related expenses. This total cost is often referred to as the “burden rate” or “fully loaded cost.” The specific amount can vary significantly depending on the industry, location, and size of the company, as well as the specific benefits offered. Here’s a breakdown of some of the typical additional costs:

  1. Benefits: This can include health insurance, dental and vision insurance, retirement benefits (e.g., 401(k) contributions), life insurance, and disability insurance. Benefits can add 20% to 40% or more to the base salary.
  2. Employer Payroll Taxes: In the United States, for example, employers must pay Social Security and Medicare taxes, which amount to 7.65% of the salary. There might also be federal and state unemployment taxes.
  3. Workers’ Compensation Insurance: This varies by industry and state but is a mandatory cost for most employers.
  4. Training and Development: Costs associated with onboarding, training, and professional development can also add to the total cost.
  5. Office Space: The cost of providing a workspace, which includes rent, utilities, office supplies, and equipment, can vary widely depending on location and the nature of the business.
  6. Technology and Equipment: Computers, software licenses, communication tools, and other technology needs can add to the cost.
  7. Miscellaneous Costs: Other costs can include travel expenses, employee perks and wellness programs, and administrative support.

On average, the additional costs can range from 1.25 to 1.4 times the base salary, but this is highly variable. For a more precise calculation, it’s essential to consider the specific factors related to the industry, location, and company benefits package. Employers often conduct a detailed analysis or use calculators provided by HR services to estimate these costs accurately.


https://www.cbpp.org/research/policy-basics-where-do-our-federal-tax-dollars-go

Policy basics: Where do our federal tax dollars go? (2023). Center on Budget and Policy Priorities. https://www.cbpp.org/research/policy-basics-where-do-our-federal-tax-dollars-go


More to come…Back to homework for now…8)

Colonization. A Virus of the Mind?

Is there any point in time where the species homo sapiens sapiens wasn’t engaging in the act of colonization? I think not. And it is my suggestion that it is an intrinsic part of human nature and existence. That at the very least there was at some point in human evolutionary development a beneficial and necessary use for it as a function. My question now, though, is, does it still serve that same purpose as beneficial for evolution, or is it a part of evolution that is truly fading away?

Personally, I would like to think that colonization is in a state of atrophy, ultimately becoming functionless in human evolution.

Why do we inherently, as humans, want to colonize everything? Because it is a virus we have. A virus of the mind.

Perhaps a poem?

From cradle, to grave, what first steps taken?
Amongst ancient echoes ancestors awaken.
From a primal urge, to an endless drive,
We seek, we explore, we expand, to thrive.

Down verdant valleys, over rugged peaks,
Our relentless quest, a conquering spirit seeks.
Is it a force of nature, primal, raw, unrefined?
Yes, colonization – a virus of the mind.

This tribal aspiration toward empire inclined,
These seeds of dominion, domination refined.
The human species conquered and mined,
Through every era this behavior entwined,

Our urge to conquer, to claim, to bind,
What distant treasures await we will find?
To what do we owe this quirky desire,
Will it grow like a flood, or burn out like a fire?

The world we know shrinks under our gaze,
This mystery of old continues to amaze.
We ponder most deeply, evolutions fair stride,
Is this urge now a relic to be cast aside?

Will these ancient impulses still find room,
What once was progress, now slated for doom.
In a world so connected, no longer so vast,
I sense a shift, a call to recast.

This virus of mind, once vital, now lame,
Humanity ponders evolution’s new aim.
This ancient desire, through atrophy fade,
Once evolution whispers, a new way is made.

We once were seekers of lands to possess,
Now stewards of self, undoing distress.
A mind’s fair dance through time and space,
Perhaps a new rhythm will find its place.

From conqueror to healer, transitions we make,
Survival in balance, for our planet’s sake.
As nomads of history, we write in our genes,
A bold new chapter of destiny convenes.