As Above, So Below

As Above, So Below: Humans and Earth as Symbiotic and Parasitic Entities

The phrase “As Above, So Below” originates from ancient philosophies, suggesting that the macrocosm reflects the microcosm and vice versa. This concept invites us to explore the relationship between humans and Earth by drawing a parallel to the relationship between bacteria and the human body. Just as bacteria can be both beneficial and harmful within the digestive tract, humans have the potential to either nurture or devastate the Earth’s ecosystems. Walk with me as I explore the dual role humans play in relation to Earth, akin to how bacteria interact with the human body, and how this relationship requires a delicate balance for mutual survival.

The Symbiotic and Parasitic Roles of Bacteria and Humans

Bacteria in the human digestive tract can be broadly categorized into those that are symbiotic and those that are parasitic. Symbiotic bacteria play essential roles in human health by aiding in digestion, synthesizing vitamins, and bolstering the immune system. These microorganisms form a mutually beneficial relationship with their human host, thriving within the digestive environment while providing necessary functions for human survival. In contrast, parasitic bacteria disrupt normal bodily functions, causing infections and diseases that can lead to serious health complications.

Similarly, humans interact with Earth in ways that can be symbiotic or parasitic. On one hand, humans have the capacity to contribute positively to the planet’s ecosystems. Sustainable practices, such as reforestation, renewable energy development, and conservation efforts, reflect humanity’s potential to live in harmony with Earth’s natural systems. These actions not only benefit the environment by preserving biodiversity and reducing pollution but also ensure the long-term survival of human societies by maintaining the planet’s ability to support life.

On the other hand, human activities often take on a parasitic nature, causing significant harm to the environment. Industrialization, deforestation, pollution, and the overexploitation of natural resources have led to widespread environmental degradation. This destructive behavior mirrors the impact of pathogenic bacteria in the human body, where an imbalance can lead to diseases that compromise the host’s health. This comparison between humans and bacteria highlights the dual potential humans hold: they can either sustain and enrich the Earth or degrade and deplete its resources.

The Importance of Balance in Human-Earth Interactions

The human body maintains a delicate balance between beneficial and harmful bacteria through what we call our immune system and other regulatory mechanisms. When this balance is disrupted, whether by illness, poor diet, or external factors, the consequences can be severe, leading to conditions such as inflammatory diseases, infections, or even chronic illnesses. Similarly, Earth has natural regulatory systems, such as the carbon cycle, water cycle, and food chains, which maintain environmental stability. These systems are designed to keep ecosystems functioning healthily, ensuring that life can thrive in a balanced environment.

However, just as an imbalance in bacteria leads to health problems in humans, an imbalance in how humans interact with Earth can have devastating consequences. Climate change, driven by excessive greenhouse gas emissions, is one of the most pressing examples of this imbalance. The disruption of the carbon cycle, primarily through the burning of fossil fuels, has led to global warming, rising sea levels, and extreme weather events, threatening both natural ecosystems and human societies.

Another example is the loss of biodiversity, often a direct result of human activities like deforestation, habitat destruction, and pollution. Biodiversity is crucial for ecosystem resilience, allowing environments to recover from disturbances and continue to provide essential services such as clean air, water, and food. The decline in biodiversity mirrors the loss of beneficial bacteria in the human gut, which can lead to digestive disorders and weakened immunity. In both cases, the loss of diversity—whether microbial or biological—leads to a weakened system more vulnerable to external stresses.

The Need for a Symbiotic Future

The future health of both humans and the Earth hinges on maintaining a balanced, symbiotic relationship rather than allowing parasitic behaviors to dominate. In the human body, maintaining a healthy bacterial balance is increasingly recognized as vital to overall health, leading to the growing popularity of probiotics and prebiotics. These substances help nurture beneficial bacteria, ensuring that they outcompete harmful pathogens and contribute to a well-functioning digestive system.

In a similar vein, humans must adopt proactive measures to foster a healthier relationship with Earth. This can be achieved through sustainable practices that minimize environmental impact and promote the restoration of natural ecosystems. Global initiatives aimed at reducing carbon emissions, protecting endangered species, and restoring degraded lands are crucial steps in this direction. These efforts are akin to providing the Earth with the environmental equivalent of probiotics—restorative actions that promote balance and health.

Education and awareness are also essential in this symbiotic journey. Just as individuals learn about the importance of maintaining gut health, society must be educated about the importance of sustainable living. Understanding the consequences of our actions and the benefits of positive environmental stewardship can inspire collective efforts to protect the planet. By shifting from a parasitic to a symbiotic role, humans can ensure that Earth remains a viable and thriving home for future generations.

This metaphor of humans as bacteria within Earth’s “digestive tract” serves as a powerful reminder of the impact we have on our planet. Like our own bacteria(gut flora), we can be either beneficial or harmful, depending on our actions and the balance we maintain within our environment. The health of our planet, much like the health of the human body, depends on the maintenance of this delicate balance.

As above, so below—the principle that governs the relationship between humans and Earth also applies to the microscopic world within us. Just as a healthy bacterial balance is crucial for human well-being, a balanced and symbiotic relationship between humans and Earth is essential for the planet’s health and our own survival. By recognizing and embracing our potential to contribute positively to the Earth, we can shift the balance from parasitism to symbiosis, ensuring a thriving future for both humanity and the natural world, within and without.

Devil in a New Dress

How are we to understand viruses and their role in pathology? I predict that in the not-too-distant future, we will have a different understanding than we do today and that our current understanding is little more than a devil(demon) with a new dress on. The word virus is taken from the Latin word for poison. Literally, “slimy liquid poison.”

I predict that in the future, we will come to understand that what we call viruses will be better understood as something akin to snippets of code like those we use in programming our computers, which dictate how they function. Snippets of code that tell biological lifeforms how to function under various environmental conditions at any given point in time.

I predict that in the future, we will no longer entertain the idea that viruses can be passed from one person to another, resulting in various states of disease. Disease and acute expressions of it will be better understood as something more akin to an automobile that is never maintained or serviced. The human body is much like an automobile that begins its life functioning fabulously with a high level of ease. And if it is maintained properly, it can live on indefinitely. If not, it will begin to function poorly and eventually break down completely. Sound familiar? Know anyone whose body is broken down and functioning poorly? The cause is one and the same. Poor quality fuel and lack of scheduled maintenance.

I predict that in the future, if we do well, we will, on the whole, quit looking for causes outside of our control for what we call disease. We will move away from pharmaceuticals, realizing that they cannot make someone whole again. That pharmaceuticals are little more than bandaids on bulletholes. Instead of soft-peddling the role of personal responsibility, we will tell people the hard truths of what their life should look like if they want to maintain full functionality. That we would hold people responsible for what it means to be a fully and gainfully functioning human being rather than pushing pills to numb the pain resulting from poor choices that led them to a doctor in the first place.

Age

Imagine living in a world where it was completely normal to live well beyond one hundred years of age. A world where it was completely normal for a one-hundred-and-twenty-year-old body to have the functionality and appearance of an Olympic athlete.

If that were the norm and you found yourself aging like most people do today, to maybe 80, how would that make you feel? A life where you found yourself shuffling behind a walker or being pushed in a wheelchair by a caretaker from seventy-five until you breathed your last painful breath at 80. A life where you had to stop working and retire at sixty-five because that was all that was expected of you in your condition, all while everyone else around you was living beyond one hundred and twenty years as mentioned above.

How would that make you feel?

The Question

Read the following carefully and then answer the QUESTION.

Only 5–10% of all cancer cases can be attributed to genetic defects, whereas the remaining 90–95% have their roots in the ENVIRONMENT and LIFESTYLE.

Our skin(outside/epidermis) covers an average area of 18.75 square feet. Our gastrointestinal tract which makes up the rest of the humans environmentally exposed surface area covers an average area of 377 square feet.

Our GI tract which is twenty(20) times larger than our external world is just one thin and very delicate layer of dermis compared to our external environment which is made up of an incredibly durable five(5) layers that can withstand all manner of insult and injury.

The average human consumes 1,750 pounds of food per year passing over/through that tract, which is actually external though most consider it internal. In actuality, the inside of our body doesn’t start until the small intestine.

QUESTION: According to the aforementioned information, what is the single greatest cause of environmentally caused cancer based on exposure and lifestyle choices?

A Momentary Channeling of Ray Bradbury

It’s a gentle Southern California afternoon just a few miles from the coast of Long Beach. The sound of birds calling out in a harmonious sense of discord. The ants in front of me on the hot concrete mill back and forth to and fro, gently greeting each other for just a moment as they continue on their journey.

I look up to see the leaves of my Betula Birch, which I planted some fifteen years ago—it may have even been sixteen. The leaves bristled back and forth quickly, then slowly, and back again as the gentle breeze from the south worked them up into an audible frenzy. Which reminds me…I need to trim Betty a little.

As I look down at the 60-year-old warm concrete beneath my feet, I’m reminded that my father and his father before him may have very well stood here, just like me, looking at this same piece of ground, the same sky, breathing in that same sense of awe that I am experiencing.

They may have even experienced many years earlier, that same joy I feel…Sitting here today.

Wulzen Anti-Stiffness Factor

The Wulzen factor, also known as the “anti-stiffness factor,” is a compound called stigmasterol, which is present in raw milk and sugarcane juice. Dr. Rosalind Wulzen discovered stigmasterol. Stigmasterol plays a crucial role in the assimilation of calcium and phosphorus by promoting their proper utilization and preventing their excessive deposition in soft tissues. It helps maintain the balance of these minerals in the body, ensuring that calcium and phosphorus are adequately absorbed and utilized for bone health and metabolic processes. This regulation prevents calcification and the associated negative effects on various organs and tissues, contributing to overall health and the prevention of conditions such as atherosclerosis, chronic kidney disease, liver disease, neurological disorders, cognitive decline, and other related disorders.

Stigmasterol is a fat-soluble nutrient that combats arthritis and alleviates symptoms such as pain, swelling, and stiffness. Early nutrition researchers considered it to be a vitamin-like substance, but it was never officially recognized as a vitamin by mainstream medical and government authorities. The factor is destroyed by pasteurization, leading to a debate where advocates argue that pasteurization could contribute to arthritis by eliminating this beneficial compound.

Stigmasterol, also known as a phytosterol, is a plant sterol found in various plant sources such as vegetables, legumes, nuts, seeds, and unrefined plant oils. It is also concentrated in mammalian lactates, which offers several health benefits. Firstly, stigmasterol lowers cholesterol levels by competing with dietary cholesterol for absorption in the digestive system, thereby reducing the amount that enters the bloodstream. Additionally, it exhibits anti-inflammatory properties, which are beneficial in managing chronic inflammation-related conditions like arthritis.

Stigmasterol also has antioxidant effects, protecting cells from damage caused by free radicals and potentially reducing the risk of chronic diseases. Some studies suggest that stigmasterol inhibits the growth of cancer cells, indicating possible anticancer properties, though more research is needed in this area. Furthermore, stigmasterol may contribute to maintaining bone health by influencing enzymes involved in bone metabolism. Its combined effects of lowering cholesterol and providing anti-inflammatory and antioxidant benefits also support better cardiovascular health.

Critics of pasteurization laws suggested that acknowledging the existence and benefits of the Wulzen factor would challenge the widespread promotion of pasteurized dairy products. In modern nutritional science, the Wulzen factor is not widely acknowledged, with limited contemporary research supporting its existence or efficacy. Most of the evidence comes from early studies. While raw milk advocates often cite the Wulzen factor as a reason for consuming unpasteurized dairy products, regulatory bodies continue to support pasteurization to prevent foodborne illnesses, citing the lack of scientific consensus on the benefits of the Wulzen factor.

Interestingly, both Rosalind M. Wulzen and her longtime colleague and lifelong friend Alice M. Bahrs lived almost 100 years. Both made it to 98, which is not a common feat. It would appear that they may very well have discovered a key factor in greater longevity and quality of life if it were demonstrated that they were actually smoking what they were selling. Chances are they were.

Incorporating stigmasterol-rich foods into a balanced diet may provide these aforementioned health benefits, though it’s important to consider overall dietary patterns and lifestyle for optimal health outcomes.

Dearest People of Earth

People of Earth,

My name is Michael Loomis. I am a Southern California native. I have spent almost every day of my life in Long Beach, a Los Angeles suburb. I’ve spent 51 years here, and I love it. Everything about this place.

I wanted to take a moment and talk to ALL of you today. We are living in a fabulous time, a time when more people have access to basic goods and services necessary to make life possible without overdue burdens. By no means have we solved poverty and starvation on a global scale, but we are witnessing a revolution in technology, industry, and now intelligence that is allowing us to understand better how we can meet ALL of our basic needs. Food, shelter, clothing, and health care.

Over the last few decades, we have witnessed unprecedented growth in computer technology, which has allowed us to access vast amounts of data in a very short space of time. The libraries of the world are now online, which allows our large language models to be accessed by artificial intelligence engines in a way and at a rate that the human mind could have never imagined just a few short decades ago. In no uncertain terms, we are now witnessing the advent of a new age. An Intellectual Revolution born out of the foundation of the Industrial Revolution that began in the middle of the eighteenth century.

The time has come and now is when and where we need to embrace and welcome the reality of where we are in the passage of time. We have been born into a time and space where human labor and planning for the future are becoming a thing of the past—things that our future generations will only be able to understand through the lens of history. Whether it is our children, grandchildren, or great-grandchildren, there will come a day in the near future when that last job will no longer need to be filled. No more working by the sweat of our brow to provide for our daily bread. Our basic needs. And we need to prepare for it. There will be no more inequities.

And now I imagine you have a question that has been swirling around, forming in your mind about how we are going to prepare for this inevitability. This, I imagine, is followed by another question: What are we going to do with all the time that will be freed up because of this inevitability? And if there is no more work that needs to be done, how are we going to pay for our basic needs and luxuries?

At this point, we already live in a time of luxury compared to all of recorded human history. Consider that. Now consider this: We humans are the only species on Earth that has had the inclination to take that which was once free and accessible to all and put it behind lock and key. Food, shelter, and clothing were historically accessible to all mankind long before there were jobs, payroll, banks, and human resource departments. And today, if someone down on their luck is caught taking that which is behind lock and key without paying for it, we then put them behind lock and key, giving them food, shelter, and clothing, their basic needs for free. Kind of ironic, isn’t it?

Allow me to address some of those questions about the future that are likely swirling around in your head.

First of all, just because there will be no more jobs, that doesn’t mean that there will be no work to be done. Far from it. There will be plenty for us to do to ensure that all goes well. However, it will look different. The reality is that we are all going to need to accept these changes in work and meaning because the old way will have faded off into obscurity.

No longer will a household, say a family of four, need to work forty to eighty hours a week just to meet their basic needs. And I can hear the question now, “But who’s going to pay for it all?”

This is the wrong question to ask. The right question would be, “Why would we still need to pay for it?” The answer would be that we need to remedy the problems that led to the need to pay for it and replace them with solutions that would eliminate 84% of the financial burden that requires our human resources in exchange for pay.

Above Image(Cbpp, 2023)

trillion divided by million United States Citizens is approximately $70,262.

And then there is the money that employers add to the pot that would be freed up to fund the future.

The total cost to an employer for an employee extends well beyond the hourly wage due to benefits, insurance, office space, taxes, and other related expenses. This total cost is often referred to as the “burden rate” or “fully loaded cost.” The specific amount can vary significantly depending on the industry, location, and size of the company, as well as the specific benefits offered. Here’s a breakdown of some of the typical additional costs:

  1. Benefits: This can include health insurance, dental and vision insurance, retirement benefits (e.g., 401(k) contributions), life insurance, and disability insurance. Benefits can add 20% to 40% or more to the base salary.
  2. Employer Payroll Taxes: In the United States, for example, employers must pay Social Security and Medicare taxes, which amount to 7.65% of the salary. There might also be federal and state unemployment taxes.
  3. Workers’ Compensation Insurance: This varies by industry and state but is a mandatory cost for most employers.
  4. Training and Development: Costs associated with onboarding, training, and professional development can also add to the total cost.
  5. Office Space: The cost of providing a workspace, which includes rent, utilities, office supplies, and equipment, can vary widely depending on location and the nature of the business.
  6. Technology and Equipment: Computers, software licenses, communication tools, and other technology needs can add to the cost.
  7. Miscellaneous Costs: Other costs can include travel expenses, employee perks and wellness programs, and administrative support.

On average, the additional costs can range from 1.25 to 1.4 times the base salary, but this is highly variable. For a more precise calculation, it’s essential to consider the specific factors related to the industry, location, and company benefits package. Employers often conduct a detailed analysis or use calculators provided by HR services to estimate these costs accurately.

The above information was drawn from ChatGPT.


https://www.cbpp.org/research/policy-basics-where-do-our-federal-tax-dollars-go

Cbpp. (2023, September 29). In case you missed it… Center on Budget and Policy Priorities. https://www.cbpp.org/blog/in-case-you-missed-it-674

Policy basics: Where do our federal tax dollars go? (2023). Center on Budget and Policy Priorities. https://www.cbpp.org/research/policy-basics-where-do-our-federal-tax-dollars-go


More to come…Back to homework for now…8)

Colonization. A Virus of the Mind?

Is there any point in time where the species homo sapiens sapiens wasn’t engaging in the act of colonization? I think not. And it is my suggestion that it is an intrinsic part of human nature and existence. That at the very least there was at some point in human evolutionary development a beneficial and necessary use for it as a function. My question now, though, is, does it still serve that same purpose as beneficial for evolution, or is it a part of evolution that is truly fading away?

Personally, I would like to think that colonization is in a state of atrophy, ultimately becoming functionless in human evolution.

Why do we inherently, as humans, want to colonize everything? Because it is a virus we have. A virus of the mind.

Perhaps a poem?

From cradle, to grave, what first steps taken?
Amongst ancient echoes ancestors awaken.
From a primal urge, to an endless drive,
We seek, we explore, we expand, to thrive.

Down verdant valleys, over rugged peaks,
Our relentless quest, a conquering spirit seeks.
Is it a force of nature, primal, raw, unrefined?
Yes, colonization – a virus of the mind.

This tribal aspiration toward empire inclined,
These seeds of dominion, domination refined.
The human species conquered and mined,
Through every era this behavior entwined,

Our urge to conquer, to claim, to bind,
What distant treasures await we will find?
To what do we owe this quirky desire,
Will it grow like a flood, or burn out like a fire?

The world we know shrinks under our gaze,
This mystery of old continues to amaze.
We ponder most deeply, evolutions fair stride,
Is this urge now a relic to be cast aside?

Will these ancient impulses still find room,
What once was progress, now slated for doom.
In a world so connected, no longer so vast,
I sense a shift, a call to recast.

This virus of mind, once vital, now lame,
Humanity ponders evolution’s new aim.
This ancient desire, through atrophy fade,
Once evolution whispers, a new way is made.

We once were seekers of lands to possess,
Now stewards of self, undoing distress.
A mind’s fair dance through time and space,
Perhaps a new rhythm will find its place.

From conqueror to healer, transitions we make,
Survival in balance, for our planet’s sake.
As nomads of history, we write in our genes,
A bold new chapter of destiny convenes.

Preceding CO2 Transport: Respiration

January 7, 2024

Me: What process precedes carbon dioxide transport?

ChatGPT: The process that precedes carbon dioxide (CO2) transport in the body is cellular respiration. This is a metabolic process that occurs in the cells of organisms. Here’s a brief overview of the process: 

  1. Glycolysis: This is the first step of cellular respiration and takes place in the cytoplasm of cells. Glucose, a six-carbon sugar, is broken down into two three-carbon molecules called pyruvate. This process produces a small amount of ATP (adenosine triphosphate, the energy currency of the cell) and releases electrons that are used in later stages.
  2. Pyruvate Oxidation and the Citric Acid Cycle: Pyruvate enters the mitochondria of the cell, where it is converted into acetyl CoA, a two-carbon molecule. Acetyl CoA then enters the citric acid cycle (also known as the Krebs cycle), where it is completely oxidized to carbon dioxide. This process generates more electrons for the next stage and a small amount of ATP.
  3. Electron Transport Chain and Oxidative Phosphorylation: This is the final stage of cellular respiration and occurs in the inner mitochondrial membrane. The electrons generated in the previous steps are used to create a proton gradient across the membrane. This gradient drives the synthesis of a large amount of ATP. Oxygen serves as the final electron acceptor and combines with protons to form water.

After the production of CO2 in the citric acid cycle, CO2 is then transported out of the cell into the blood, where it is carried to the lungs for exhalation. The transport of CO2 involves several mechanisms, including being dissolved directly in the plasma, chemically bound to hemoglobin, or converted into bicarbonate ions.

Me: What are the steps that precede glycolysis in the answer you provided?

ChatGPT: Before glycolysis in the cellular respiration process, there are key preparatory steps involving the intake and processing of nutrients:

  1. Nutrient Intake: The first step involves the consumption and digestion of food. Carbohydrates in the food are broken down into simpler sugars like glucose, which is a primary fuel for glycolysis. Proteins are broken down into amino acids, and fats into fatty acids and glycerol. These components are absorbed into the bloodstream through the digestive system.
  2. Transportation to Cells: Once in the bloodstream, glucose and other nutrients are transported to various cells throughout the body.
  3. Glucose Uptake by Cells: Cells take in glucose from the bloodstream. This process is facilitated by insulin in many types of cells. Insulin is a hormone that signals cells to increase glucose uptake, effectively lowering blood sugar levels.
  4. Glucose Activation: Before glucose can enter the glycolysis pathway, it must be “activated”. This involves phosphorylation (adding a phosphate group), which is carried out by enzymes like hexokinase. This step uses energy in the form of ATP, converting it to ADP (adenosine diphosphate). The phosphorylation of glucose helps to keep the concentration of glucose low in the cell, allowing for continued glucose diffusion into the cell.

These steps ensure that glucose is available and prepared for the glycolysis pathway, which then leads into the rest of the cellular respiration process.

Me: Can you explain this whole process step by step from ingestion of nutrients to the end of the process where we exhale the CO2 from our lungs?

ChatGPT: Certainly! The journey from nutrient ingestion to the exhalation of carbon dioxide is a complex and fascinating process that involves multiple systems in the body. Here’s a step-by-step explanation:

 1. Ingestion and Digestion of Nutrients

  • Ingestion: It starts with eating food, which contains carbohydrates, proteins, and fats.
  • Digestion: In the digestive system, these nutrients are broken down:
    • Carbohydrates are broken down into simple sugars like glucose.
    • Proteins are broken down into amino acids.
    • Fats are broken down into fatty acids and glycerol.
  • These nutrients are then absorbed into the bloodstream, primarily in the small intestine.

2. Transportation and Uptake of Glucose

  • Transport to Cells: Glucose and other nutrients are transported via the bloodstream to various cells in the body.
  • Cellular Uptake of Glucose: Cells absorb glucose, facilitated by insulin, a hormone that regulates blood sugar levels.

3. Cellular Respiration: Energy Production from Nutrients

  • Glycolysis:
    • Occurs in the cytoplasm of cells.
    • Glucose is converted into pyruvate, producing a small amount of ATP (energy) and NADH (an electron carrier).
  • Pyruvate Oxidation and Citric Acid Cycle:
    • In the mitochondria, pyruvate is converted into Acetyl CoA.
    • Acetyl CoA enters the Citric Acid Cycle (or Krebs Cycle), producing more NADH, FADH2 (another electron carrier), and a small amount of ATP.
    • Carbon dioxide is released as a waste product in this cycle.

4. Electron Transport Chain and ATP Production

  • Electron Transport Chain:
    • Located in the inner mitochondrial membrane.
    • NADH and FADH2 from previous steps donate electrons, which are passed through a series of proteins in the membrane.
    • This process creates a proton gradient across the membrane.
  • Oxidative Phosphorylation:
    • Protons flow back across the membrane through an enzyme called ATP synthase.
    • This flow drives the production of a large amount of ATP.
  • Oxygen’s Role: Oxygen acts as the final electron acceptor, combining with protons to form water.

5. Carbon Dioxide Transport and Exhalation

  • Transport of CO2:
    • The carbon dioxide produced in the mitochondria diffuses into the bloodstream.
    • It’s carried in the blood in three forms: dissolved in plasma, chemically bound to hemoglobin, or as bicarbonate ions.
  • Return to the Lungs: Blood transports CO2 back to the lungs.
  • Exhalation: Finally, CO2 is expelled from the lungs when we exhale.

Integration of Systems

This entire process involves an intricate collaboration between the digestive, circulatory, respiratory, and endocrine systems, demonstrating the complex harmony of human physiology. From the initial ingestion of food to the final breath that expels carbon dioxide, each step is crucial for the efficient production and utilization of energy in the body.

Me: Yes, and thank you ChatGPT.

Are Humans Well Suited For a Frugivore Fare?

This is my response to a post in a friends Facebook group that promotes a more fruit based diet. Enjoy…


<–MY OPINION–>Personally, I still believe that we are omnivores best suited for a whole-food, single-ingredient diet. A diet made up of a whole collection of single ingredients rather than highly processed foods.

Can someone consume a frugivore fare and live healthy and well? I believe they can for a time. Perhaps maybe even for a long time. It really just depends on whether or not they can get a broad enough spectrum of ALL the nutrients and building blocks their body needs in their daily fare. Most cannot in our modern world, and eventually, the wheels will fall off of their under-nourished frugivore bus. Maybe not in 2 years, or 5 years, or even 10 years, but eventually, the nutritional piper will need to be paid.

On the other end of the spectrum(extreme), you have the cray cray carnivores. They can get along just fine for a time too. But eventually, in like manner, the wheels will fall off of their bus as well. For them, though, it will be a woefully painful calling of metabolic madness.

Both diets, in my opinion, are different wings of an omnivore bird.

And this is why I still believe that we are best served by being a well-balanced omnivore in the dietary portion of our existence.

Life is meant to be lived as a well-formed and balanced kingdom where exercise is King and diet is Queen, and without both, you don’t have a kingdom.

Work hard, eat right, and sleep right. If you can do these three things almost everything else will follow and fall into place according to natural law.

Listen to your body. Even if it is telling you something that may not concur with the path you have been on for some time.

Again, this is my opinion, based on my studies of human physiology and disease pathology over the last 6+ years. Thanks for reading…😎 and be blessed.