Protein Deamination is Our Damnation

Do you eat a protein-rich diet? Do you take any protein supplements because you are trying to build big muscles in the gym?

Have you ever met or known someone with a protein deficiency? Someone who truly had a protein deficiency? That’s because the only people who ever suffer from insufficient protein have to live in a part of the world where food is scarce or non-existent. In places like Sub-Saharan Africa, Southeast Asia, and Central America. It is usually prevalent in children and newborns. During times of hunger induced by natural calamities — such as droughts or floods — or political upheaval, these countries often have a limited supply or absence of food.

Lack of protein in the diet causes Kwashiorkor. Protein is found in every cell in your body. Protein is required in your diet for your body to repair and replace cells. This is how a healthy human body regenerates cells regularly. Protein is particularly necessary for growth in children and during pregnancy. When the body is deficient in protein, growth and regular bodily functions slow down, and kwashiorkor develops. (1) (Kwashiorkor, n.d.)

Today, in the United States we are living in what is called a postindustrial world/society. A postindustrial society is marked by a transition from a manufacturing-based economy to a service-based economy, a transition that is also connected with subsequent societal restructuring. Postindustrialization is the next evolutionary step from an industrialized society and is most evident in countries and regions that were among the first to experience the Industrial Revolution, such as the United States, western Europe, and Japan. (2) (Robinson, 2013)

To reiterate, in the United States, we live in a postindustrial world/society. And as such we have no want for even the most basic of nutritional needs. And the reality is that most of us in the United States have access to and consume too much good stuff, food, and otherwise.

As such, I will demonstrate below why our health is suffering so badly in this world of plenty we call home. The short answer is…Too much protein. When we consume protein above and beyond our body’s physiological needs, our body’s innate mechanisms become the machinery that forms the basis of our damnation. Our early demise.

The following is a simplified explanation of what happens inside the human body when we consume protein above its immediate needs at any moment in time.

Deamination is the process of removing an amino group from an amino acid. This process is crucial because it allows the amino acid to be converted into a form that can be used for energy production or other metabolic processes. It is

It’s important to note that while gluconeogenesis is a critical metabolic pathway, the body generally prefers to use carbohydrates and fats as the primary sources of energy, resorting to protein catabolism as a significant energy source only under conditions of dietary deficiency or metabolic stress.

When the body uses amino acids for energy, deamination occurs in the liver, converting the nitrogen-containing amino group into ammonia, which is then converted into urea and excreted by the kidneys. The remaining part of the amino acid, which is now without the amino group, enters various metabolic pathways, including the Krebs cycle, for energy production or the synthesis of glucose or fatty acids.

Which bodily process happens first, proteolysis or deamination?

The process by which the body breaks down protein into individual amino acids is called “proteolysis.” This process involves the breakdown of the peptide bonds that link amino acids together in proteins. Proteolysis is carried out by enzymes known as proteases and peptidases. It occurs in various parts of the body, including the stomach and small intestine, where dietary proteins are digested, as well as within cells, where proteins are continually broken down and recycled. Proteolysis is a key step in protein metabolism, allowing the body to utilize the amino acids for various functions, including new protein synthesis, energy production, and other metabolic processes.

Proteolysis occurs before deamination in the sequence of protein metabolism. Here’s the typical order:

  1. Proteolysis: This is the first step, where proteins are broken down into individual amino acids. Proteolysis happens through the action of digestive enzymes in the gastrointestinal tract for dietary proteins or by cellular enzymes for endogenous proteins.
  2. Deamination: Once amino acids are released from proteins, they are used for various purposes. Deamination may occur if an amino acid is to be used for energy or converted into other compounds. This is the process where the amino group is removed, typically in the liver.

Proteolysis is the initial process that releases amino acids from proteins, and deamination is a subsequent step that further modifies amino acids for various metabolic needs.

When proteins are metabolized, they are broken down into their constituent amino acids. A key component of these amino acids is nitrogen. During the catabolism (breakdown) of amino acids, the amino group (NH2) is removed in a process called deamination. This process occurs mainly in the liver.

Nitrogenous wastes are a byproduct of the metabolism of proteins and nucleic acids. The digestive process breaks down proteins into amino acids, which then enter the body’s metabolic pathways, producing nitrogenous wastes.

Removing the amino group results in the formation of ammonia (NH3), which is toxic. The liver then converts this ammonia into less toxic substances, mainly urea in mammals, including humans. This conversion is part of the urea cycle. The urea is then transported to the kidneys, where it is filtered out of the blood and excreted from the body in urine.

To reiterate, nitrogenous wastes, particularly ammonia and urea, which are byproducts of amino acid deamination, are harmful to the brain, soft tissues, and the cardiovascular system due to their toxic effects, especially in high concentrations. Here’s why:

  1. Ammonia Toxicity: Ammonia, a direct byproduct of deamination, is highly toxic, especially to the brain and nervous system. It disrupts normal cellular and neurological functions.
  2. Urea and Osmotic Imbalance: While urea, which is less toxic than ammonia, is a safer way for the body to transport and excrete nitrogen, high levels of urea cause osmotic imbalances. This leads to dehydration and stress on cells, including those in the cardiovascular system.
  3. Metabolic Acidosis: Accumulation of nitrogenous wastes leads to metabolic acidosis, a condition where the blood becomes too acidic. This impairs cardiovascular function and damages heart tissue.
  4. Inflammation and Oxidative Stress: Excess nitrogenous waste induces inflammation and oxidative stress, contributing to tissue damage and atherosclerosis (hardening of the arteries).

The body normally converts ammonia to urea in the liver (via the urea cycle) and excretes it through the kidneys to avoid these harmful effects. However, suppose this system is overwhelmed(over-consumption) or impaired (as in liver or kidney disease). In that case, nitrogenous waste levels become dangerously high, leading to toxicity and damage beyond the body’s ability to repair.

What kind of diets result in higher levels of nitrogenous waste?

Diets that result in higher levels of nitrogenous waste are typically those rich in proteins and nucleic acids. This is because the metabolism of these macronutrients involves the removal and excretion of nitrogen:

  1. High-Protein Foods: Foods with high protein content are the primary contributors to increased nitrogenous waste. This includes:
    • Meat (beef, pork, lamb, poultry)
    • Fish and seafood
    • Eggs
    • Dairy products (milk, cheese, yogurt)
    • Legumes (beans, lentils, soy products)
    • Nuts and seeds
  2. Foods Rich in Nucleic Acids: Nucleic acids (DNA and RNA) are also metabolized into nitrogenous wastes, though to a lesser extent than proteins. Foods that are particularly high in nucleic acids include:
    • Organ meats (liver, kidney, heart)
    • Seafood (especially sardines, mackerel, and shellfish)
    • Yeast and yeast extracts

To reiterate, when these foods are digested, the body breaks down their proteins into amino acids and their nucleic acids into nucleotides. The nitrogen-containing parts of these molecules are then converted primarily into urea, which is excreted by the kidneys.

When consuming a diet high in protein, it is important to support the kidneys in effectively processing and eliminating these nitrogenous wastes. Excessive protein intake over an extended period strains the kidneys, particularly in individuals with preexisting kidney conditions.

Here is what one should expect if one consumes a high-protein diet that results in excess proteolysis and deamination.

  1. Atherosclerosis: There is evidence that certain metabolic by-products of protein contribute to atherosclerosis and the buildup of plaques in the arteries.
  2. Calcifications, Vascular and Otherwise: In the context of kidney disease, conditions like hyperphosphatemia (high phosphate levels) occur due to excessive protein intake. This leads to vascular and other systemic calcifications and is a significant risk factor for cardiovascular disease.
  3. Hypertension: High protein intake, especially from animal sources, increases blood pressure, a major risk factor for CVD. This complex relationship involves various factors, including changes in kidney function and fluid balance due to the handling of the by-products of protein metabolism.
  4. Kidney Stress and Damage: The kidneys filter waste products, including those produced during deamination. Excessive deamination overburdens the kidneys, leading to or exacerbating kidney diseases, including chronic kidney disease and azotemia.
  5. Increased Urea and Uremia: As a result of excessive deamination, urea levels in the blood increase, leading to a condition called uremia, where the kidneys cannot filter it efficiently. Uremia has been associated with an increased risk of cardiovascular disease, as it contributes to factors like endothelial dysfunction, arterial stiffness, and inflammation.
  6. Inflammation: Chronic kidney disease and uremia lead to systemic inflammation, which is a known contributor to cardiovascular disease.
  7. Liver Disorders: Since the liver converts ammonia (a by-product of deamination) into urea, excessive deamination stresses the liver. In cases of liver dysfunction, ammonia may not be adequately converted, leading to hyperammonemia, which is toxic, especially to the brain.
  8. Metabolic Effects: Chronic consumption of excessive protein, especially animal protein, has various metabolic effects, such as increasing the risk of kidney stones, altering calcium balance, affecting bone health, and impacting kidney function, especially in individuals with pre-existing kidney disease.
  9. Metabolic Acidosis: Deamination leads to an accumulation of acidic compounds in the body. It disrupts the body’s acid-base balance, leading to metabolic acidosis. This condition causes fatigue, rapid breathing, confusion, and in severe cases, shock or death.
  10. Alterations in Gut Microbiota: High protein intake, particularly from animal sources, alters the composition and function of the gut microbiota. This has various implications for gut health and possibly systemic inflammation.
  11. Electrolyte Imbalances: The process of deamination and the subsequent handling of its by-products affects the balance of electrolytes in the body, potentially leading to imbalances that affect muscle and nerve function.
  12. Bone Health Issues: Excessive protein intake and deamination affect the body’s calcium balance, leading to bone loss and increased risk of osteoporosis.

At this point in time, I believe this is likely the most significant modifiable factor to our species overall mortality. Imagine if a pharmaceutical company offered a single pill that could prevent all of these 12 problems. Everyone would be clamoring for it, the individual that stumbled across this solution would be considered a savior of mankind.

There is a way to do this with a pill. If you still don’t see the solution, if it is not obvious, please don’t hesitate to ask me how.


  1. Kwashiorkor. (n.d.). S10.fit. https://www.s10.fit/blogs/disease/What-is-the-cause-for-Kwashiorkor/
  2. Robinson, R. C. (2013, November 19). Postindustrial society | Urbanization, Automation, Globalization. Encyclopedia Britannica. https://www.britannica.com/money/topic/postindustrial-society

Proteolysis and Aging. Why I Take Serrapeptase and Lumbrokinase(Sometimes)

What is the relationship between proteolysis and aging?

Note: The use of these enzymes should likely be for a limited time span only. I will use them for a two-week period once every few months to clean out the aging cobwebs…8). The reason why is explained in the last paragraph.


Proteolysis refers to the breakdown of proteins into their constituent amino acids or smaller peptides, typically by enzymatic action. In the context of aging, proteolysis is an essential part of cellular maintenance and repair mechanisms, which are critical for health and longevity. Here are some potential benefits of proteolysis on aging:

1. Clearance of damaged proteins: Over time, proteins can become damaged due to various factors like oxidative stress, exposure to harmful substances, etc. Damaged proteins can become dysfunctional and may contribute to age-related diseases. Proteolysis helps in clearing these damaged proteins, maintaining the health of cells and tissues.

2. Autophagy and longevity: Proteolysis is a key part of autophagy, a cellular process of self-digestion where damaged organelles, misfolded or aggregated proteins are degraded and recycled. Dysfunctional autophagy has been linked with aging and age-related diseases. Enhancing autophagy through proteolysis might promote longevity and slow down the aging process.

3. Regulation of protein homeostasis (proteostasis): Aging is associated with a decline in proteostasis, the balance of protein synthesis, folding, and degradation. Proteolysis is a major factor in maintaining proteostasis, which is crucial for cellular function and health.

4. Activation of beneficial pathways: Certain proteins, when broken down through proteolysis, can activate pathways that are beneficial for health and longevity. For example, proteolysis of certain proteins can activate mTOR (mechanistic target of rapamycin), a key regulator of aging.

5. Immune system function: Proteolysis can support immune system function, which often declines with age. The process helps present antigens to immune cells, aiding in the recognition and clearance of pathogens and potentially cancerous cells.

6. Cell signaling: Proteolysis also plays a role in various cell signaling pathways, many of which can impact aging. For example, Notch signaling, which is regulated in part by proteolysis, is involved in cell differentiation and tissue homeostasis.

While proteolysis appears to have beneficial effects on aging, it’s also important to note that uncontrolled proteolysis can lead to muscle wasting and other detrimental effects. Balance is key, and maintaining optimal levels of proteolysis is important for health and longevity. Further research is needed to better understand how to regulate proteolysis for anti-aging benefits.

-Michael J. Loomis & ChatGPT

Protein…Too Much of a Good Thing.

Are there any health-related problems created by consuming too much protein?

Author: Find my solution at the end…8)

Yes, consuming too much protein can potentially lead to several health issues. Here are some of them:

1. Kidney Damage: High protein diets, particularly animal protein, may strain the kidneys and lead to kidney disease, especially in people with pre-existing renal conditions. The kidneys have to work harder to remove the waste products of protein metabolism.

2. Dehydration: Increased protein intake can lead to dehydration. This is because the kidneys need more water to eliminate the byproducts of protein metabolism.

3. Digestive Problems: Consuming too much protein can lead to digestive issues like constipation, bloating, and other discomforts, especially if your diet is low in fiber.

4. Nutrient Deficiencies: A diet high in protein can sometimes result in neglecting other food groups, potentially leading to deficiencies in important nutrients.

5. Heart Disease: High protein diets, especially those rich in red meat and full-fat dairy, can increase the risk of heart disease due to a higher intake of saturated fat and cholesterol.

6. Bone Health: Some studies suggest that overconsumption of protein, especially animal protein, could lead to calcium loss from bones, increasing the risk of osteoporosis. However, this topic is debated, with other research suggesting adequate protein is beneficial for bone health.

7. Liver Damage: People with liver disease are advised to limit their protein intake because overconsumption could worsen liver function.

While protein is an essential part of a balanced diet, it’s important to ensure it’s consumed in moderation and as part of a varied diet to ensure the intake of other essential nutrients.

As always, it’s advisable to consult a healthcare professional or a dietitian for personalized advice before making major changes to your diet.

What are the waste products of protein metabolism?

Protein metabolism involves a number of steps that lead to the production of several waste products. Here are a few of them:

1. Ammonia (NH3): This is a toxic substance produced when proteins are broken down. The body converts it into a less harmful substance called urea.

2. Urea: This is the primary waste product of protein metabolism and is excreted in the urine. The liver converts ammonia into urea as part of the urea cycle, which is then transported to the kidneys for excretion.

3. Creatinine: This is a waste product formed from the metabolism of creatine, a compound that provides energy to muscles.

4. Uric Acid: This is a waste product formed from the breakdown of nucleic acids (the building blocks of DNA). While not directly a product of protein metabolism, diets high in certain proteins can contribute to increased levels of uric acid.

5. Carbon Dioxide (CO2): This is produced during the process of energy production in cells, including during the metabolism of the carbon skeletons of amino acids.

These waste products, especially urea, and creatinine, are often measured in blood and urine tests to assess kidney function, as the kidney plays a key role in filtering and excreting these substances.

What are the carbon skeletons of amino acids?

Amino acids, the building blocks of proteins, are composed of a central carbon atom (the alpha carbon) attached to an amino group (-NH2), a carboxyl group (-COOH), a hydrogen atom, and a side chain (R group) that varies for each specific amino acid.

When the amino group is removed from an amino acid in a process called deamination, the remaining structure — which includes the central carbon atom, the carboxyl group, and the unique side chain — is often referred to as the carbon skeleton, or sometimes the keto acid.

These carbon skeletons can be further metabolized in the body. Depending on their structure, they can enter into various metabolic pathways. Some can be converted into glucose through a process called gluconeogenesis. Others can be converted into ketone bodies or directly enter the citric acid cycle (also known as the Krebs cycle or the TCA cycle) for energy production.

In summary, the carbon skeletons of amino acids refer to the remaining molecular structure after the amino group is removed, and they can be metabolized in various ways depending on the body’s needs.

What foods contribute to the citric acid cycle?

The citric acid cycle, also known as the Krebs cycle or the tricarboxylic acid (TCA) cycle, is a series of chemical reactions used by all aerobic organisms to generate energy. This cycle doesn’t directly involve food but rather certain molecules that can be derived from the macronutrients in our diet: carbohydrates, fats, and proteins.

Here’s how different nutrients from food contribute to the cycle:

1. Carbohydrates: These are broken down into glucose during digestion. Glucose then undergoes a process known as glycolysis, resulting in a compound called pyruvate. Pyruvate enters the mitochondria (the energy-producing structures within cells), where it is further converted into Acetyl-CoA, a crucial molecule that enters the citric acid cycle.

2. Fats: Dietary fats are primarily composed of triglycerides, which are broken down into glycerol and fatty acids. Fatty acids are converted into molecules called acyl-CoA, which are then converted to Acetyl-CoA via a process called beta-oxidation. This Acetyl-CoA can then enter the citric acid cycle.

3. Proteins: Proteins are broken down into their individual amino acids. Some of these amino acids can be deaminated (removing the amino group) to form molecules that can be converted into Acetyl-CoA or other intermediates of the citric acid cycle.

In summary, a wide range of foods can contribute to the citric acid cycle indirectly, as the cycle uses Acetyl-CoA and other intermediates that are derived from the breakdown of carbohydrates, fats, and proteins in the foods we eat. Foods rich in these nutrients include whole grains, fruits, vegetables, meat, poultry, fish, legumes, nuts, seeds, and oils.

Does the citric acid cycle have any effect on urine or blood ph?

The citric acid cycle itself does not directly affect blood or urine pH. This cycle primarily serves to generate energy for the cell by oxidizing Acetyl-CoA to produce ATP, carbon dioxide, and water. However, there are indirect ways that elements of metabolism linked to the citric acid cycle can impact blood and urine pH.

1. Respiration and Blood pH: One of the products of the citric acid cycle is carbon dioxide (CO2), which is expelled from cells, transported in the blood to the lungs, and exhaled. CO2 in the blood can combine with water to form carbonic acid, which can dissociate into bicarbonate and hydrogen ions. An increase in CO2 in the blood, therefore, can increase the acidity (lower the pH) of the blood. This is usually corrected by an increased breathing rate to expel more CO2, but in certain situations like respiratory disorders, it could lead to a state of acidosis.

2. Diet and Urine pH: While the citric acid cycle itself doesn’t directly influence urine pH, the types of foods you eat (which contribute different metabolites to pathways like the citric acid cycle) can influence urine pH. For example, a diet high in animal protein can lead to more acidic urine due to the generation of sulfurous waste products from protein metabolism. On the other hand, a diet rich in fruits and vegetables can lead to more alkaline urine due to the metabolites they contribute.

3. Metabolic Acidosis or Alkalosis: In certain pathologic conditions, metabolic acidosis (low blood pH due to increased production of acids or inadequate removal of acids by the kidneys) or metabolic alkalosis (high blood pH due to loss of acid from the body or increased bicarbonate levels) can occur. These conditions can involve metabolites that are part of or related to the citric acid cycle, but these are usually complex situations involving multiple physiological processes.

The body has multiple systems in place to tightly regulate blood pH, including the respiratory system, the renal system, and various buffer systems in the blood. Disturbances in pH can have significant effects on bodily function and require medical attention.

Hey Mike, are rice and beans combined a good source of protein?

Why yes they are. Combining rice and beans can provide a complete protein source. Proteins are made up of amino acids, some of which the body cannot make on its own. These are called essential amino acids, and they must be obtained from the diet.

Individual plant-based foods often lack one or more of these essential amino acids, but you can combine foods to get all of them. This is known as protein combining or complementary proteins. For example, grains like rice are low in the amino acid lysine but have enough of another amino acid, methionine. On the other hand, legumes like beans are low in methionine but have enough lysine.

When you eat rice and beans together, they can provide all of the essential amino acids in sufficient amounts, making the combination a complete protein source. This is particularly beneficial for those following a vegetarian or vegan diet.

However, it’s worth noting that you don’t need to eat complementary proteins at every single meal. As long as you’re consuming a variety of protein sources throughout the day, your body can assemble the amino acids into complete proteins.

It Takes Time to Turn Life Around

Try to wrap your head around the following statement.

𝘌𝘷𝘦𝘳𝘺𝘵𝘩𝘪𝘯𝘨 𝘪𝘴 𝘱𝘦𝘳𝘧𝘦𝘤𝘵𝘭𝘺 𝘱𝘦𝘳𝘧𝘰𝘳𝘮𝘦𝘥 𝘣𝘺 𝘕𝘢𝘵𝘶𝘳𝘦 𝘵𝘩𝘳𝘶 𝘦𝘷𝘰𝘭𝘶𝘵𝘪𝘰𝘯𝘢𝘭, 𝘱𝘳𝘰𝘨𝘳𝘦𝘴𝘴𝘪𝘷𝘦 𝘤𝘩𝘢𝘯𝘨𝘦𝘴, 𝘥𝘦𝘷𝘦𝘭𝘰𝘱𝘮𝘦𝘯𝘵𝘴 𝘢𝘯𝘥 𝘢𝘤𝘤𝘰𝘮𝘱𝘭𝘪𝘴𝘩𝘮𝘦𝘯𝘵𝘴 𝘢𝘯𝘥 𝘯𝘰𝘵 𝘣𝘺 𝘤𝘢𝘵𝘢𝘴𝘵𝘳𝘰𝘱𝘩𝘪𝘦𝘴. 𝘕𝘰𝘵𝘩𝘪𝘯𝘨 𝘪𝘴 𝘮𝘰𝘳𝘦 𝘪𝘯𝘤𝘰𝘳𝘳𝘦𝘤𝘵 𝘵𝘩𝘢𝘯 𝘵𝘩𝘦 𝘮𝘪𝘴𝘵𝘢𝘬𝘦𝘯 𝘪𝘥𝘦𝘢 𝘵𝘩𝘢𝘵 𝘢 𝘥𝘦𝘤𝘢𝘥𝘦𝘴 𝘰𝘭𝘥 𝘤𝘩𝘳𝘰𝘯𝘪𝘤 𝘥𝘪𝘴𝘦𝘢𝘴𝘦 𝘤𝘢𝘯 𝘣𝘦 𝘩𝘦𝘢𝘭𝘦𝘥 𝘵𝘩𝘳𝘶 𝘢 𝘷𝘦𝘳𝘺 𝘭𝘰𝘯𝘨 𝘧𝘢𝘴𝘵, 𝘰𝘳 𝘢 𝘳𝘢𝘥𝘪𝘤𝘢𝘭𝘭𝘺 𝘦𝘹𝘵𝘦𝘯𝘥𝘦𝘥 𝘴𝘵𝘳𝘪𝘤𝘵 𝘧𝘳𝘶𝘪𝘵 𝘥𝘪𝘦𝘵.

“𝘕𝘢𝘵𝘶𝘳𝘦’𝘴 𝘮𝘪𝘭𝘭𝘴 𝘨𝘳𝘪𝘯𝘥 𝘴𝘭𝘰𝘸, 𝘣𝘶𝘵 𝘴𝘶𝘳𝘦.” -Arnold Ehret

There is no quick fix to a lifetime of egregious error. If one lives for decades filled with toxic environmental exposures, e.g., sugar, candy, junk food, fast food, processed food, alcohol, tobacco, and drugs(prescription or not), one cannot expect to turn their ship around in a short period of time.

I used to be that guy, and I’ve been living a life of recovery for some 6.5 years and counting. I finally, after all this time, feel like I am somewhat headed in the right direction. Not 30, 60, or 90 days of change, but a consistent, long-term, steady leaning in the right direction away from a lifetime of bad decisions. Almost 7 years now. I guess it’s true what they say. Slow and steady wins the race.

If you, like me, decide you want to make some meaningful changes toward a better, longer, and healthier life, remember that the long game is where your focus should be, and a transition will likely be the healthiest way to achieve your life-long change.

In my opinion, the one thing you can do to start that will make the biggest overall difference is to remove sugar, candy, junk food, fast food, and processed food. These are likely the worst offenders that, when removed, will allow your body to start repairing and rejuvenating itself the fastest. Of course, alcohol, tobacco, caffeine, and any other drugs related to addiction will need to be addressed as they are also a hindrance to recovery, repair, and rejuvenation.

To be fair, alcohol is right up there with these top 5 that I mentioned quitting first and, in some cases, might need to be addressed first. Especially if you were anything like me. I started off by removing alcohol first, and then I removed sugar, candy, junk food, fast food, and processed food a little over a year later. All these things have helped me recover my life. Alcohol is the only one that I quit cold turkey.

Eventually, I even when on to remove all animal-based food sources. But even that didn’t happen overnight. I started off by removing all things dairy. Milk, cheese, and butter in the spring of 2019 followed by beef and pork products later that year. Over the following year in 2020, I ended up removing chicken, turkey, fish, and eggs. But even those were staggered over that full year. First chicken, then turkey. The last form of meat to go was fish, which, frankly, I didn’t eat much of anyways and then toward the end of 2020, I decided to take a break from eggs to see what it would be like to be completely whole-food/plant-based for a month. I never looked back. I have not had any reason to.

At this point, I’ve had no animal-based foods in almost 2 years, and all is well. To my delight, I found out that our body doesn’t need cow, pig, fish, or fowl proteins to live a long healthy life. We need human proteins, and it is our liver that creates these for us if we provide it with all of the building blocks(amino acids) it needs. All of which we can get from plant-based sources along with our body’s own catabolic or recycling processes by which it recovers old cell parts that have completed their normal life cycle, returning previously used amino acids back into our body’s amino acid pool. Our body is totally into recycling…8)

All this to say that any meaningful, long last change is going to take some time and investment, but the reward is well worth the effort as the payoff is more quality and quantity time for our future selves to spend however we best see fit.

And time is our most valuable asset.