The Role of Protein on Cardiovascular Disease and Associated Cardiac Events

How does protein deamination affect atherosclerotic plaque, cardiovascular health, and arterial calcification?

Protein deamination, a process where amino groups are removed from amino acids, can have several implications for cardiovascular health, particularly in the context of atherosclerotic plaque formation and arterial calcification. Here’s how these processes are interconnected:

  1. Atherosclerotic Plaque Formation:
    • Role of Amino Acids: Certain amino acids, especially those containing sulfur (like homocysteine), can influence atherosclerotic processes. Elevated levels of homocysteine, which can result from abnormal protein deamination, are associated with an increased risk of atherosclerosis.
    • Inflammatory Response: Deaminated proteins or amino acids might be seen as foreign by the body, triggering an immune and inflammatory response. This inflammation can contribute to the development of atherosclerotic plaques.
  2. Cardiovascular Health:
    • Endothelial Dysfunction: Abnormal protein deamination can lead to the production of substances that are harmful to the endothelial lining of blood vessels. This can result in endothelial dysfunction, a precursor to atherosclerosis.
    • Oxidative Stress and Inflammation: The by-products of protein deamination can contribute to oxidative stress and inflammation, which are key factors in the development of cardiovascular diseases.
  3. Arterial Calcification:
    • Calcium Deposition: Certain by-products of protein deamination can contribute to the calcification process in arteries. This calcification can make the arterial walls stiff and less elastic, increasing the risk of hypertension and other cardiovascular problems.
    • Vascular Smooth Muscle Cells: Protein deamination influences the behavior of vascular smooth muscle cells, promoting their transformation into a type that deposits calcium, thus contributing to arterial calcification.
What role do protein deamination and excess circulating phosphorus that results from deamination play in atherosclerosis?

Protein deamination and excess circulating phosphorus, both arising from metabolic processes in the body, can have significant roles in the development and progression of atherosclerosis. Here’s how these factors are interlinked:

  1. Protein Deamination:
    • Endothelial Dysfunction: Protein deamination results in the formation of various by-products, such as ammonia and keto acids. These by-products can cause endothelial dysfunction, a key factor in the initiation of atherosclerosis. Endothelial cells line the inner walls of blood vessels, and their dysfunction can lead to reduced nitric oxide availability, increased oxidative stress, and inflammatory response, all of which contribute to atherosclerotic plaque formation.
    • Inflammatory Response: The by-products of protein deamination can also trigger an immune response, leading to chronic inflammation. Inflammation is a crucial element in developing atherosclerotic plaques, contributing to their growth and instability.
  2. Excess Circulating Phosphorus:
    • Vascular Calcification: High levels of phosphorus in the blood, often a consequence of impaired kidney function or dietary factors, can lead to vascular calcification. This process involves the deposition of calcium and phosphorus in the arterial walls, making them stiffer and more prone to damage. Vascular calcification is a significant risk factor for atherosclerosis and cardiovascular diseases.
    • Oxidative Stress and Endothelial Dysfunction: Excess phosphorus can induce oxidative stress and further exacerbate endothelial dysfunction. This creates a cycle where impaired endothelial function leads to more plaque formation and arterial stiffness, escalating the progression of atherosclerosis.

The relationship between protein deamination, phosphorus levels, and atherosclerosis highlights the importance of maintaining a balanced diet and proper kidney function, as kidneys play a crucial role in regulating phosphorus levels. Individuals with chronic kidney disease are particularly at risk, as they often have elevated phosphorus levels and altered amino acid metabolism, which can accelerate the development of cardiovascular diseases, including atherosclerosis.

Therefore, in the context of cardiovascular health, it’s essential to monitor and manage factors like protein intake and phosphorus levels, especially in individuals with pre-existing health conditions that might predispose them to these metabolic imbalances.

What amino acids contain sulfur?

Sulfur-containing amino acids are primarily characterized by the presence of sulfur in their molecular structure. The most commonly known sulfur-containing amino acids are:

  1. Methionine: This is an essential amino acid, meaning that the human body cannot synthesize it, and it must be obtained from the diet. Methionine plays a critical role in many cellular processes, including the initiation of protein synthesis.
  2. Cysteine: Unlike methionine, cysteine can be synthesized in the human body, although its synthesis depends on the availability of methionine. Cysteine is important for protein structure, as it can form disulfide bonds that help maintain the three-dimensional structure of proteins.
  3. Homocysteine: This is a non-protein amino acid, typically formed as an intermediate in the metabolism of methionine and cysteine. Elevated levels of homocysteine in the blood are considered a risk factor for cardiovascular diseases.
  4. Taurine: Although not incorporated into proteins, taurine is an important sulfur-containing amino acid found in many tissues, playing a role in bile salt conjugation, eye health, cardiac function, and the development and function of skeletal muscle, the central nervous system, and the cardiovascular system.
  5. Cystine: This is a dimeric amino acid formed by the oxidation of two cysteine molecules, which are linked by a disulfide bond. Cystine is more stable than cysteine and plays a role in the structural and functional aspects of various proteins and enzymes.

What foods are highest in methionine, cysteine, homocysteine, taurine, and cystine?

Different foods are rich in various sulfur-containing amino acids like methionine, cysteine, homocysteine, taurine, and cystine. Here’s a breakdown of foods high in each of these amino acids:

  1. Methionine:
    • Animal Proteins: Chicken, turkey, beef, pork, and fish are excellent methionine sources. Eggs, particularly egg whites, are also rich in this amino acid.
    • Dairy Products: Milk, cheese, and yogurt contain good amounts of methionine.
    • Plant-Based Sources: For vegetarians and vegans, soy products (like tofu and soybeans), nuts (such as Brazil nuts and almonds), and seeds (like sesame and sunflower) are good plant-based sources.
  2. Cysteine:
    • Animal-Based Foods: Like methionine, cysteine is high in meats (chicken, pork, beef), eggs, and dairy products.
    • Plant Sources: Whole grains (like wheat germ and oatmeal), legumes (such as lentils and chickpeas), and seeds are good plant sources of cysteine.
  3. Homocysteine:
    • Homocysteine is not typically obtained directly from the diet. Instead, it is produced in the body from methionine. Therefore, foods high in methionine can indirectly contribute to homocysteine levels.
  4. Taurine:
    • Seafood and Fish: Particularly high in taurine, with shellfish (like clams, scallops, and shrimp) and fish (such as salmon and mackerel) being excellent sources.
    • Meat: Chicken and beef also contain taurine but in lower amounts compared to seafood.
    • Dairy: Some dairy products have taurine but in smaller quantities.
  5. Cystine:
    • As with cysteine, cystine is found in high-protein foods like meats, eggs, and dairy products.
    • Plant Sources: Beans, lentils, and whole grains also provide cystine, albeit in smaller amounts compared to animal sources.

What foods are highest in methionine, cysteine, homocysteine, taurine, and cystine? Please list them in descending order by volume.

  1. Methionine (from highest to lowest content):
    • Eggs (especially egg whites)
    • Fish (such as salmon, cod)
    • Chicken and turkey
    • Beef and pork
    • Dairy products (like cheese and milk)
    • Nuts and seeds (like Brazil nuts, sesame seeds)
    • Soy products (tofu, soybeans)
  2. Cysteine (from highest to lowest content):
    • Pork, beef, poultry
    • Eggs
    • Dairy products (cheese, milk)
    • Whole grains (wheat germ, oats)
    • Legumes (lentils, chickpeas)
    • Nuts and seeds
  3. Homocysteine:
    • Homocysteine is not typically found in foods. It’s a by-product of methionine metabolism in the body. Thus, foods high in methionine can influence homocysteine levels.
  4. Taurine (from highest to lowest content):
    • Shellfish (clams, scallops, shrimp)
    • Fish (mackerel, salmon)
    • Meat (chicken, beef)
    • Dairy (in smaller amounts)
  5. Cystine (from highest to lowest content):
    • Meats (beef, pork, chicken)
    • Eggs
    • Dairy products
    • Beans and lentils
    • Whole grains

What role do protein deamination and excess circulating nitrogen that results from deamination play in atherosclerosis?

Protein deamination and the resulting excess circulating nitrogen play roles in the development of atherosclerosis through several mechanisms:

  1. Protein Deamination:
    • Formation of Ammonia and Urea: Protein deamination leads to the release of ammonia, which is then converted to urea in the liver. Elevated levels of these nitrogenous compounds can have systemic effects on the body.
    • Endothelial Dysfunction: The by-products of protein deamination, including ammonia and urea, can contribute to endothelial dysfunction. The endothelium is the inner lining of blood vessels, and its dysfunction is a key early step in the development of atherosclerosis. This dysfunction can impair the regulation of vascular tone, promote inflammation, and enhance the susceptibility of blood vessels to atherosclerotic changes.
  2. Excess Circulating Nitrogen:
    • Oxidative Stress: An excess of nitrogenous compounds can contribute to oxidative stress, which is a state of imbalance between free radicals and antioxidants in the body. Oxidative stress damages cells and is a major factor in the initiation and progression of atherosclerosis.
    • Inflammation: Chronic exposure to high levels of nitrogenous waste products can induce inflammation, another critical factor in the development of atherosclerotic plaques. Inflammatory processes contribute to the progression of these plaques and their potential to cause cardiovascular events.
  3. Other Metabolic Impacts:
    • Impaired Kidney Function: Excess nitrogen compounds can strain the kidneys, which are responsible for filtering and excreting these waste products. Impaired kidney function is a risk factor for cardiovascular disease, partly because it leads to an accumulation of harmful substances in the blood, including those resulting from protein deamination.
  4. Interactions with Other Risk Factors:
    • Synergistic Effects with Other Cardiovascular Risk Factors: The effects of protein deamination and excess circulating nitrogen can be exacerbated when combined with other cardiovascular risk factors, such as hypertension, high cholesterol, smoking, and diabetes.

Fruit, Soups and Salads

This is a continuation of my previous writ “Why I Am No Longer a Raw Vegan.”

To further clarify my point. Because I would hate to see people walk away from a whole-food/plant-based diet when they don’t need to.

We can get enough of the right stuff in from a whole-food/plant-based diet, but we need to be sure to be getting ENOUGH of ALL in their organic forms. Calcium, magnesium, chloride, phosphate, potassium, and sodium are the 6 most important electrolytes that our bodies need to function properly.

These electrolytes are minerals in our body that have an electric charge. They are in our blood, urine, tissues, and other body fluids. Electrolytes are important because they help balance the amount of water in our bodies. Balance our body’s acid/base (pH) levels. Their job is to move nutrients into our cells and waste out those cells. They ensure that your brain, heart, skin, muscles, nerves work the way they are crafted to.

Our body cannot function properly if these are not being consumed in sufficient amounts. And if you get too many, our kidneys are there to remove any excesses. On the flip side, our body cannot make these on its own and has to work harder to correct the imbalances by lowering the levels of all the electrolytes across the board spending our vital energies and bodily fluids that could be used elsewhere.

The problem with a fruitarian, frugivore, or any other raw diet is that the so-called “approved,” selections oftentimes won’t provide enough of the required electrolytes for continuous optimal function resulting in disfunction. Not because there is something wrong with being a frugivore as some can do so successfully, but that most people on Earth live far enough outside of the temperate zones where there is plenty and often times find themselves eating more of one kind rather than a rich variety.

The kinds of foods that do contain ENOUGH of ALL the required electrolytes cannot be assimilated in their raw state. Hence, the suggestion to eat your vegetables in the form of a slow-cooked soup.

Pick any or all of our common fruits consumed on a typical raw vegan, frugivore, or fruitarian diet and go through the above listed 6 electrolytes and see how much each of those is found in sweet juicy fruits and gentle leafy greens. It should become obvious to anyone how problematic it would be and how difficult it would be to get enough from eating raw alone in most parts of the world we live in today. The only one you might get enough of is potassium.

Yet a homemade bowl of slow-cooked vegetable soup that contains dark leafy greens, legumes, lentils, and sweet potato for dinner a few nights a week would solve this problem sufficiently. The attached picture will give you an idea.
And to be clear, I am not suggesting the use of table salt. It is not necessary. But it sure does taste good.

Sodium is necessary for our muscles and nerves to function properly. It also helps by controlling the fluids in our body that impact blood pressure.

Chloride is important in that it balances out other electrolytes. It also balances acidity and alkalinity, maintaining healthy pH, and is essential for nutrient assimilation.

Potassium is important for overall muscle contraction which in turn also regulates our heart and blood pressure. It assists in the transmission of nerve impulses. It also contributes to bone health.

Magnesium is important to the production of what we call proteins; our body’s machinery that does most of the heavy lifting along with the instructions for those biological machines so that they can function properly in both stable and changing environments. The rhythm of our heart depends on it. It is a regulator of glucose levels in our blood and enhances our immune functions.

Calcium is important for strong bones and healthy teeth. It is an important regulator of nerve impulses and muscular movements. It also assists in the formation of blood clotting factors.

Phosphate enhances the work of calcium by strengthening bones and teeth. It also assists in the production of energy needed for soft tissue growth and repair.

Bicarbonate plays a key role in balancing our body’s pH levels while helping control electrical signaling at the cellular level in conjunction with sodium, potassium, and chloride.

*Why Am I No Longer a Raw Vegan?

Why am I no longer a raw vegan?

Simply put…Insufficient electrolytes and subsequent imbalances. Not enough of ALL of the needed electrolytes, with excesses of some, like potassium.

Water and electrolytes are essential to our health. Electrolytes take on a positive or negative charge when they dissolve in your body fluid. This enables them to conduct electricity and move electrical charges or signals throughout your body. These charges are crucial to many functions that keep you alive, including the operation of your brain, nerves, and muscles, and the creation of new tissue.

Simply put, bad things happen over long frames of time that often go unnoticed because of the slow crawl towards the disease states of these deficiencies.

I am not suggesting salting your foods by any means. But I am suggesting looking at the ways to get ENOUGH of ALL of the needed electrolytes for OPTIMAL human functionality and longevity of years.

And a raw vegan diet in my humble opinion is not a way to accomplish that end.

I intend to attend my birthday at 120 years with a body that looks and feels no more than a robust 34. And I will do what it takes to get there. Even admitting when I have been wrong in practice.

See you in 2092.

Back to the Garden

Wouldn’t it be nice if we could point to a Golden Age of dietary bliss as a standard for life?

I’ve been looking for the perfect diet for the last 4+ years of my life. Over that time I have continued to refine my own dietary and lifestyle practices in accordance with everything I am learning. If there is something I find that I have been doing that could be improved, I don’t hesitate. Out with the old and in with the new. My willingness to change for the sake of improvement is about the only thing still the same after these 4+ years.

One thing that has remained consistently true the whole way is efficiency and conservation of resources. That my body benefits the most when I meet its overall needs at the overall lowest metabolic cost. The greatest amount of nutrients assimilated for the least amount of effort. Simply put…Be easy on my body. Don’t make it work any harder than it needs to in accessing its energy and building blocks composed of carbon, hydrogen, oxygen, nitrogen, and phosphorus.

I’ve found that the best way to accomplish this is with a whole-food/plant-based diet. And I’ve come to this conclusion, because of the design of our digestive tract, how it functions, and finally taking into consideration the microbial life that inhabits our digestive tract. Some five to eight pounds of microbial life just like the life I find in an acre of topsoil. Some 300 to 500 different kinds of bacteria containing nearly 2 million genes living happily with other tiny organisms like archaea, viruses, and fungi, they make what’s known as the microbiota, or the microbiome.

So I’m thinking…

What are the preferred foods of bacteria and the rest of his gut buddies? What would a thriving acre of topsoil best be served by? What would be the easiest for those topsoil inhabitants to digest and what would be the most difficult?

Seems like the answer should be simple for anyone to answer. Feed our body by properly feeding our microbes.


More reading on topsoil feeding in agriculture: To restore our soils, feed the microbes


Back to the Garden of Eatin

by Michael J Loomis